Tìm x, biết:
a) x : 3 1 5 = 1 1 2
b) 2 2 5 : x = − 1 3 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+1^3=2^5-\left(-1^3\right)\)
\(\Rightarrow x+1=33\)
=> x = 32
b) \(3^7-x=1^4-\left(-3^5\right)\)
\(\Rightarrow2187-x=1+243=244\)
=> x = 1943
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
`@` ` \text {Ans}`
`\downarrow`
`a,`
`1/4+3/4*x=3/2-x`
`=> 1/4 + 3/4x - 3/2 + x = 0`
`=> (1/4 - 3/2) + (3/4x + x) = 0`
`=> -5/4 + 7/4x = 0`
`=> 7/4x = 5/4`
`=> x = 5/4 \div 7/4`
`=> x = 5/7`
Vậy, `x=5/7`
`b,`
`3/5*x-1/4=1/10*x-1/2`
`=> 3/5x - 1/4 - 1/10x + 1/2 = 0`
`=> (3/5x - 1/10x) + (-1/4 + 1/2)=0`
`=> 1/2x + 1/4 = 0`
`=> 1/2x = -1/4`
`=> x = -1/4 \div 1/2`
`=> x = -1/2`
Vậy, `x=-1/2`
`c,`
`3x-3/5=x-1/4`
`=> 3x - 3/5 - x + 1/4 = 0`
`=> (3x - x) - (3/5 - 1/4) = 0`
`=> 2x - 7/20 = 0`
`=> 2x = 0,35`
`=> x = 0,35 \div 2`
`=> x = 7/40`
Vậy, `x=7/40`
`d,`
`3/2*x-2/5=1/3*x-1/4`
`=> 3/2x - 2/5 - 1/3x + 1/4 = 0`
`=> (3/2x - 1/3x) - (2/5 - 1/4) = 0`
`=> 7/6x - 3/20 = 0`
`=> 7/6x = 3/20`
`=> x = 3/20 \div 7/6`
`=> x = 9/70`
Vậy, `x=9/70`
`@` `\text {Kaizuu lv uuu}`
a: \(\Leftrightarrow2x+\dfrac{7}{2}=\dfrac{16}{3}:\dfrac{8}{3}=2\)
=>2x=-3/2
hay x=-3/4
b: 2x+3=5
=>2x=2
hay x=1
c: =>3(x-2)=4(5+x)
=>4x+20=3x-6
=>x=-26
a) \(-0,6x-\dfrac{7}{3}=5,4\Leftrightarrow-\dfrac{3}{5}x=5,4+\dfrac{7}{3}\Leftrightarrow x=\dfrac{116}{15}.\left(-\dfrac{5}{3}\right)=-\dfrac{116}{9}\).
b) \(2,8:\left(\dfrac{1}{5}-3x\right)=1\dfrac{2}{5}\Leftrightarrow\dfrac{1}{5}-3x=2,8:\dfrac{7}{5}\Leftrightarrow-3x=2-\dfrac{1}{5}\Leftrightarrow x=\dfrac{9}{5}:\left(-3\right)=-\dfrac{3}{5}\).
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
\(a,5,2x+7\dfrac{2}{5}=6\dfrac{3}{4}\\ \Rightarrow\dfrac{26}{5}x+\dfrac{37}{5}=\dfrac{27}{4}\\ \Rightarrow\dfrac{26}{5}x=-\dfrac{13}{20}\\ \Rightarrow x=-\dfrac{1}{8}\\ b,2,4:\left(\dfrac{-1}{2}-x\right)=1\dfrac{3}{5}\\ \Rightarrow\dfrac{12}{5}:\left(\dfrac{-1}{2}-x\right)=\dfrac{8}{5}\\ \Rightarrow\dfrac{-1}{2}-x=\dfrac{3}{2}\\ \Rightarrow x=-2\)
a ) x : 3 1 5 = 1 1 2 ⇒ x = 1 1 2 .3 1 5 = 3 2 . 16 5 = 24 5
b ) 2 2 5 : x = − 1 3 5 ⇒ x = 2 2 5 : − 1 3 5 = 12 5 : − 8 5 = − 3 2 .