K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

a ) − 299 300 < − 101 102 . b ) − 163 167 > − 223 227 .

25 tháng 10 2015

Đặt A = \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}\)

=> A < \(\frac{1}{100.101}+\frac{1}{101.102}+....+\frac{1}{204.205}\)

=> A < \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{204}-\frac{1}{205}\)

=> A < \(\frac{1}{100}-\frac{1}{205}\)

=> A < \(\frac{1}{2100}\)

Đặt B = \(\frac{1}{2^2.3.5^2.7}=\frac{1}{2100}\)

=> A < B

=> \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}

25 tháng 10 2015

giỏi lắm mình cũng biết làm chỉ hỏi chơi thôi 

ủng hộ

26 tháng 3 2020

a) 3200=(32)100=9100 ; 2300=(23)100=8100

=> 9100>8100 hay 3200>2300

b) 7150=(712)25=504125 ; 3775=(373)25=5065325

=> 504125<5065325 hay 7150<3775

c)rút gọn

2016014/2017015=2014/2015

2016016014/2017017015=2014/2015

=> 2014/2015 = 2014/2015

24 tháng 2 2020

a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)

Mà \(64< 81\)

\(\Rightarrow64^4< 81^4\)

\(\Rightarrow2^{24}< 3^{16}\)

b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)

Mà 8 < 9  

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta có 71 < 2401 

\(\Rightarrow71^5< 2401^5\)

\(\Rightarrow71^5< 7^{20}\)

!! K chắc câu c

@@ Học tốt

Chiyuki Fujito

24 tháng 2 2020

a) \(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

c) \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)

\(\text{a, }2^{30}=8^{10}\)

     \(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)

\(\text{Vậy }2^{30}< 3^{20}\)

\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)

     \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(\text{Vậy }5^{300}< 243^{100}\)

26 tháng 9 2017

103và 2100

Ta có:1030=(103)10=100010

          2100=(210)10=102410

Vì 1000<1024 nên 1030<2100

5300 và 3453

Ta có:5300=(52)150=25150

            3453=(33)151=27151=27.27150

Vì  25 < 27.27 nên 5300<3453

nhớ k ch mình nhé

13 tháng 9 2017

Ta có:2332 < 2333 = (23)111 = 8111 (1)

3223 > 3222 = (32)111 = 9111 (2)

Từ (1)(2) => 2332 < 8111 < 9111 < 3223.

=> 2332 < 3223.

14 tháng 1 2017

Ta chia tổng trên thành 100 cặp :

   [ 101 + ( - 102 ) ] + [ 103 + ( - 104 ) ] + ... + [ 299 + ( - 300 ) ]

= ( - 1 ) + ( - 1 ) + ( - 1 ) + ... + ( - 1 )

Vì có 50 cặp nên ta có 50 số hạng -1

= ( - 1 ) . 50

= - 50

15 tháng 1 2020

 s=101+(-102)+103+(-104)+...+299+(-300)

s=-1+-1+-1+...+-1(150 lần)

s=-1*150

s=-15làm bừa sai thôi 

15 tháng 1 2020

bó tay luôn

10 tháng 1 2016


Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) 
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6 
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3

1 tháng 2 2018

-101+102-103+104+...-299+300 ( 202 số )

= -101+102+ ( - 103 ) + 104+...+ ( - 299 )+300

= - 1 + ( - 1 ) + .......... + ( - 1 ) ( có 101 số - 1 )

= - 1 . 101

= - 101