K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

 Chọn A.

Tập xác định: D = R. Ta có 

Ta không xét trường hợp y' ≤ 0, ∀ x ∈ R vì a = 1> 0.

Hàm số nghịch biến trên một đoạn có độ dài là 3 ⇔ y' = 0 có 2 nghiệm x1; x2 thỏa mãn:

9 tháng 1 2017

Chọn A.

Tập xác định:D= R. Ta có:y ‘= m-3 + (2m+1).sinx

Hàm số nghịch biến trên R

 

Trường hợp 1: m= -1/ 2 ; ta có  0 ≤ 7 2   ∀ x ∈ ℝ

Vậy hàm số luôn nghịch biến trên R.

Trường hợp 2: m< -1/ 2 ; ta có

 

 

Trường hợp 3:m > -1/2 ; ta có:

Vậy  - 4 ≤ m ≤ 2 3

 

26 tháng 12 2017

30 tháng 12 2019

Đáp án là C 

Tập xác định : D = R \{m}

Ta có :   y ' = 1 − m x − m 2

Hàm số nghịch biến trên khoảng (−¥;2) khi và chỉ khi y' <0, "x < 2, tức là : 1 − m < 0 m ≥ 2 ⇔ m ≥ 2  . Vậy tập giá trị m cần tìm là [2; + ∞ )

NV
8 tháng 7 2021

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)

8 tháng 8 2019

Đáp án C

20 tháng 11 2019

Đáp án đúng : A

22 tháng 3 2018

Đáp án A

  

 

Bài toán đưa về

17 tháng 7 2021

 sao lại cho g(-1) và cho g(1) vào vậy ạ

 

y'= \(4x^3-4\left(m-1\right)x\)

Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)

\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)

Vậy \(m\in\) (−\(\infty\);2]