Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình đề nghị bạn giở SGK toán 8 tập 1 trang 93 bài 7 hình học chương I nhé.
b) Ta có: \(AC\perp BD\)
mà HE//BD=>\(HE\perp AC\)
mà AC//HG
=> \(\widehat{EHG}=90^o\)
Chứng minh tương tự với 2 trong 3 góc còn lại của tứ giác EFGH.
=> Nếu AC vuông góc với BD thì EFHG là hình chữ nhật.
Đây là hướng làm nhé, còn bạn hiếu sao thì trình bày theo ý bạn nhé:vv
a) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của BC(gt)
Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔADC có
H là trung điểm của AD(gt)
G là trung điểm của CD(gt)
Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra HG//EF và HG=EF
Xét ΔABD có
E là trung điểm của AB(gt)
H là trung điểm của AD(gt)
Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: EH//BD(cmt)
BD⊥AC(gt)
Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)
Ta có: HG//AC(cmt)
EH⊥AC(Cmt)
Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)
hay \(\widehat{EHG}=90^0\)
Xét tứ giác EHGF có
HG//EF(cmt)
HG=FE(cmt)
Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)
nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: EFGH là hình chữ nhật(cmt)
nên \(S_{EFGH}=EF\cdot EH\)
\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)
Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2
c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG
hay AC=BD
Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của DC
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành
a) Nối AC
tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD
=> HG//AC; HG=1/2AC. (1)
Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC
=> EF//AC; EF=1/2AC. (2)
Từ (1) và (2) suy ra HG//EF; HG=EF
Tứ giác EFGH có HG//EF; HG=EF
Vậy EFGH là hình bình hành.
b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.
Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).
HG=1/2AC(cmt)
nên BD=AC
Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.
* Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.
Giả sử góc H=90 độ, vì HG//AC(cmt)
HG vuông góc với HE
từ hai điều này suy ra AC cũng vuông góc với HE
lại có HE//BD(cmt)
từ hai điều này lại suy ra AC vuông góc với BD
vậy để hình bình hành EFGH là hình thoi, hai đường chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.
* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.
Giả sử HE=HG => AC=BD(cmt)
H=90 độ => AC vuông góc với BD(cmt)
vậy để hình bình hành EFGH là hình vuông, hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.
a) Nối AC
tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD
=> HG//AC; HG=1/2AC. (1)
Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC
=> EF//AC; EF=1/2AC. (2)
Từ (1) và (2) suy ra HG//EF; HG=EF
Tứ giác EFGH có HG//EF; HG=EF
Vậy EFGH là hình bình hành.
b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.
Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).
HG=1/2AC(cmt)
nên BD=AC
Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.
* Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.
Giả sử góc H=90 độ, vì HG//AC(cmt)
HG vuông góc với HE
từ hai điều này suy ra AC cũng vuông góc với HE
lại có HE//BD(cmt)
từ hai điều này lại suy ra AC vuông góc với BD
vậy để hình bình hành EFGH là hình thoi, hai đường chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.
* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.
Giả sử HE=HG => AC=BD(cmt)
H=90 độ => AC vuông góc với BD(cmt)
vậy để hình bình hành EFGH là hình vuông, hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.
a) Nối AC
tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD
=> HG//AC; HG=1/2AC. (1)
Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC
=> EF//AC; EF=1/2AC. (2)
Từ (1) và (2) suy ra HG//EF; HG=EF
Tứ giác EFGH có HG//EF; HG=EF
Vậy EFGH là hình bình hành.
b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.
Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).
HG=1/2AC(cmt)
nên BD=AC
Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.
* Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.
Giả sử góc H=90 độ, vì HG//AC(cmt)
HG vuông góc với HE
từ hai điều này suy ra AC cũng vuông góc với HE
lại có HE//BD(cmt)
từ hai điều này lại suy ra AC vuông góc với BD
vậy để hình bình hành EFGH là hình thoi, hai đường chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.
* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.
Giả sử HE=HG => AC=BD(cmt)
H=90 độ => AC vuông góc với BD(cmt)
vậy để hình bình hành EFGH là hình vuông, hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.
a) Xét tam giác DBC có :
E là trung điểm của BD ( gt )
H là trung điểm của CD ( gt )
=> EH là đường trung bình của ΔDBC.
=> EH // BC và \(EH=\frac{1}{2}BC\) (1).
Xét tam giác ABC có :
F là trung điểm của AB ( gt )
G là trung điểm của AC ( gt )
=> FG là đường trung bình của ΔABC..
=>FG // BC và \(FG=\frac{1}{2}BC\) (2)
Từ ( 1 ) và ( 2 ) suy ra : FG // EH // BC và EH = FG
Vậy EFGH là hình bình hành
b, Theo ( 1) ta có : \(EH=\frac{1}{2}BC\)
mà bài cho BC = b
=> EH = \(\frac{b}{2}\)
Xét tam giác ABD có :
F là trung điểm của AB ( gt )
E là trung điểm của BD ( gt )
=> FE là đường trung bình của tam giác ABD
=> FE =\(\frac{1}{2}AD=\frac{a}{2}\) ( vì bài cho AD = a )
Chu vi hình bình hành EFGH là :
\(P_{EFGH}=2.\left(\frac{b}{2}+\frac{a}{2}\right)=a+b\)
Vậy chu vi hình thang EFGH = a + b hay = AD + BC .
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và EH=BD/2(1)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và FG=BD/2(2)
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành