K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Để phân thức xác định ta có: Cách tìm điều kiện để phân thức được xác định cực hay, có đáp án | Toán lớp 8 có nghĩa:

Cách tìm điều kiện để phân thức được xác định cực hay, có đáp án | Toán lớp 8

Vậy với x ≠ -3 và x ≠ ½ thì phân thức đã cho được xác định

18 tháng 4 2017

13 tháng 5 2018

Để phân thức có nghĩa:

x 2 + 5 x + 4 ≠ 0

⇔ (x + 4)(x + 1) ≠ 0

⇔ x ≠ -4, x ≠ -1

Vậy điều kiện để phân thức xác định là x ≠ -4 và x ≠ -1

11 tháng 11 2021

Bài 1: 

c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

ĐKXĐ: \(x\ne1\)

4 tháng 9 2021

x ≥ 1; -1

14 tháng 7 2021

Để \(\sqrt{x^2+3}\) có nghĩa thì \(x^2+3\ge0\) (luôn đúng)

Để \(\sqrt{\left(x-1\right)\left(x+2\right)}\) có nghĩa thì \(\left(x-1\right)\left(x+2\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\)

a) ĐK: \(x-5\ne0\Leftrightarrow x\ne5\)

b)

ĐK:  \(\left(\dfrac{1}{2}x+4\right)\ne0\Leftrightarrow\dfrac{1}{2}x\ne-4\\ \Leftrightarrow x\ne-8\)

c)ĐK:

 \(-2x-10\ne0\\ \Leftrightarrow-2x\ne10\\ \Leftrightarrow x\ne-5\)

a) ĐKXĐ: \(x\ne5\)

b) ĐKXĐ: \(x\ne-8\)

c) ĐKXĐ: \(x\ne-5\)

2 tháng 11 2021

Bài 5:

\(x^3=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=18\\ y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=6\\ P=x^3+y^3-3\left(x+y\right)+1993\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1993\\ P=18+6+1993=2017\)

2 tháng 11 2021

x3=18+33√(9+4√5)(9−4√5)(3√9+4√5+3√9−4√5)⇔x3=18+3x3√1⇔x3−3x=18y3=6+33√(3−2√2)(3+2√2)(3√3+2√2+3√3−2√2)⇔y3=6+3y3√1⇔y3−3y=6P=x3+y3−3(x+y)+1993P=(x3−3x)+(y3−3y)+1993P=18+6+1993=2017

14 tháng 9 2019