Phương trình tiếp tuyến với đồ thị hàm số y = f x = x 3 - 3 x 2 + 2 tại điểm có hoành độ thỏa mãn f ' ' x = 0 là:
A. y = -x + 1
B. y = -3x + 3
C. y = -x - 1
D. y = -3x - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ $f(1+3x)=2x-f(1-2x)$ thay $x=0$ suy ra $f(1)=1$
$f(1+3x)=2x-f(1-2x)$
$\Rightarrow f'(1+3x)=(2x)'-f'(1-2x)$
$\Leftrightarrow 3f'(1+3x)=2+2f'(1-2x)$. Thay $x=0$ suy ra $f'(1)=2$
PTTT của $f(x)$ tại điểm $x=1$ là:
$y=f'(1)(x-1)+f(1)=2(x-1)+1=2x-1$
Thay \(x=1\Rightarrow2f\left(2\right)+3f\left(2\right)=10\Rightarrow f\left(2\right)=5\)
Đạo hàm 2 vế giả thiết:
\(-6f'\left(5-3x\right)+3f'\left(x+1\right)=2x+4\)
Thay \(x=1\)
\(-6f'\left(2\right)+3f'\left(2\right)=6\Rightarrow f'\left(2\right)=-2\)
Phương trình tiếp tuyến:
\(y=-2\left(x-2\right)+5=-2x+9\)
Đáp án B
Ta có f ' x = 3 x 2 - 6 x ⇒ f ' ' x = 6 x - 6 = 0 ⇔ x = 1 .
Khi đó f ' 1 = - 3 ; f 1 = 0
PTTT cần tìm là y = - 3 x - 1 = - 3 x + 3