K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

chtt

11 tháng 12 2020

Bạn tham khảo tạm.

Gọi M là trung điểm BC. Trên tia đối tia MA lấy điểm F sao cho M là trung điểm AF. AM cắt EF tại K

Dễ dàng ∆ABM = ∆FCM (c.g.c)

=> ^ABM = ^FCM (2 góc t.ứ)và AB = FC

Mà 2 góc này ở vị trí slt.

=> AB // FC.

=>^BAC + ^ACF = 180° (tcp).

Lại có:

^EAC = ^DAB = 90°

=> ^EAC + ^DAB = 180°

=> ^EAB + ^BAC + ^BAC + CAD = 180°

=> ^BAC + ^EAD = 180°

Do đó ^EAD = ^ACF.

Xét ∆ACF và ∆EAD có:

AC = AE (GT)

^ACF = ^EAD 

^CF = AD (=AB)

=>∆ACF = ∆EAD (c.g.c)

=> ^CAK = ^AED (2 góc t/ứ)

=> ^CAM+ ^EAM = ^AED + ^EAM

=> ^AED + ^EAM = ^CAE=90°

=> ^AKE = 90°

=> AM vuông góc vs DE

Mà AH vuông góc DE.

=> Đpcm

2 tháng 12 2016

Gọi A' là điểm đối xứng của A qua M, bạn tự vẽ hình nhé), xét tam giác ADE và tam giác BA'A, có 
AB = AD, BA' = AC = AE, góc EAD = EAC + CAD = 90 độ + 90 độ - BAC = 180 độ - BAC = ABA' 
Do đó hai tam giác này nbằng nhau theo TH c.g.c 
==> DE = AA', mà BACA' là hình bình hành nên AM = 1/2 AA' , đpcm 
Dựa vào tíh chất hai tam giác bằng nhau có hai cặp cạnh tương ừng vuông góc thì cặp cạnh còn lại cũng vuông góc, ta CM được AM vuông góc với DE

5 tháng 8 2016

1)

undefined

a) Ta có: góc BAD+góc CAE+góc BAC=180 độ

Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)

Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)

Từ (1) và (2) => góc BAD= góc ACE

Xét tam giác ABD và tam giác ACE có:

góc ADB=góc AED=90 độ

AB=AC ( vì tam giác ABC vuông cân tại A)

góc BAD=góc ACE (cmt)

=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)

b) Theo câu a) Tam giác ABD=tam giác ACE

=> DA=EC và BD=AE

Mà DE=DA+AE nên DE=EC+BD

 

 

5 tháng 8 2016

Cảm ơn bạn nhayeu

 

19 tháng 2 2020

Lời giải:

A E H D B M C A'

Từ B kẻ đường thẳng song song với AC,cắt AH tại A' thì \(BA'\perp AE\)

Ta có : \(\widehat{A'BA}=\widehat{EAD}\)và \(\widehat{ADE}=\widehat{A'AB}\)(các cặp góc nhọn có cạnh tương ứng vuông góc)

\(\Delta EAD=\Delta A'BA\left(g-c-g\right)\)do đó BA' = AE mà AE = AC nên BA' = AC

Gọi M là giao điểm của AA' với BC,ta có :

\(\Delta AMC=A'MB\left(g-c-g\right)\), vì thế MB = MC

Vậy đường thẳng AH đi qua trung điểm của BC.