K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Để M = n − 1 n − 2  là phân số tối giản thì ƯCLN (n – 1, n -2) = 1.

Gọi  Ư C L N   ( n   -   1 ,   n     -   2 )   =   d ⇒   n   –   1   ⋮   d ;   n   –   2   ⋮ d

⇒   (   n   –   1 )   –   (   n   –   2 )   ⋮   d   ⇒ 1 ⋮ d ⇒   d   =   1  với mọi n. Vậy với mọi n thuộc Z thì M = n − 1 n − 2   là phân số tối giản.

20 tháng 4 2020

Bg

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = \(\frac{n-1}{n-2}\) (n \(\in\)\(ℤ\); n \(\ne2\))

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) \(⋮\)d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 \(⋮\)d

=> d \(\in\)Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n \(\in\)Z và n \(\ne2\)thì M là phân số tối giản.

5 tháng 3 2021

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 d

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

14 tháng 2 2016

bai toan @gmail.com

9 tháng 2 2023

a, Để \(m\) là phân số 

\(2+n\ne0\\ \Rightarrow n\ne-2\)

\(b,\) 

\(\cdot,n=1\\ \Rightarrow m=\dfrac{1-1}{2+1}=\dfrac{0}{3}=0\\ \cdot,n=3\\ \Rightarrow m=\dfrac{1-3}{2+3}=-\dfrac{2}{5}\\ \cdot,n=12\\ \Rightarrow m=\dfrac{1-12}{2+12}=-\dfrac{11}{14}\)

a: ĐKXĐ: n+2<>0

=>n<>-2

b: Sửa đề: m+n=1

m+n=1 thì 1-n=(1-n)/(2+n)

=>(1-n)(2+n)=(1-n)

=>(1-n)(1+n)=0

=>n=1 hoặc n=-1

=>m=0 hoặc m=2

=>m=0 hoặc m=2/1

n=3 thì \(m=\dfrac{1-3}{2+3}=\dfrac{-2}{5}\)

n=12 thì \(m=\dfrac{1-12}{12+2}=\dfrac{-11}{14}\)