Cho S = 1 2 + 1 6 + 1 12 + 1 20 + 1 30 + 1 42 . So sánh S với 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phân số này đều nhỏ hơn 1
Thế nên A < 1
Bài này chỉ cần so sánh với 1 thôi
Các số hạng của tổng A đều bé hơn 1 nên A < 1
Đây là quy tắc với các phân số cùng tử là 1 .
Nhé !
Ta co:
1/2+1/6+1/12+1/20+1/30+1/42
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
Ta co: 6/7=6.10101/7.10101=60606/70707
Vi 60606/70707=60606/70707 nen 6/7=60606/70707
Vay 1/2+1/6+1/12+1/20+1/30+1/42 = 60606/70707
ta có:
\(\frac{60606}{70707}=\frac{6}{7}\)
ta có:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}=\)
\(1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{7}=\frac{6}{7}\)
suy ra 6/7=6/7
suy ra \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}=\frac{60606}{70707}\)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
Vậy...
S= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
S= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 -1/6 +1/6 - 1/7 + 1/7 - 1/8
S= 1/2 - 1/ 8
S= 3/8
S= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
= 1/2 - 1/3 + 1/3 - ...+ 1/7 - 1/8
= 1/2 - 1/8
= 3/8
Ta có:\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};\frac{1}{13}>\frac{1}{20};....;\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(Có 10 phân số \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{10}{20}\)\(\Leftrightarrow S>\frac{10}{20}\)
Mà \(\frac{10}{20}=\frac{1}{2}\)nên
\(\Rightarrow S>\frac{1}{2}\)
A=(1/2+1/12+1/13+1/14+1/15)+(1/16+1/17+1/18+1/19+1/20)
Thay các phân số trong mỗi nhóm bởi phân số nhỏ nhất, ta có:
A> 1/15.5+1/20.5=1/3+1/4= 7/12>1/2
Suy ra A>1/2
Vậy A> 1/2
S = 1 2 + 1 6 + 1 12 + 1 20 + 1 30 + 1 42 = 1 1.2 + 1 2.3 + 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 = 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + 1 4 − 1 5 + 1 5 − 1 6 + 1 6 − 1 7 = 1 − 1 7 < 1
So sánh: S < 1.