1/5+1/8+1/11+1/14+...+1/92+1/95=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/3(3/2*5+3/5*8+...+3/95*98)
=1/3(1/2-1/5+1/5-1/8+...+1/95-1/98)
=1/3*96/196
=32/196
=8/49
Ta có:\(A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{11}+...+\dfrac{31}{92}-\dfrac{32}{95}+\dfrac{32}{95}-\dfrac{33}{98}\)
\(=\dfrac{1}{2}+\dfrac{33}{98}=\dfrac{82}{98}=\dfrac{41}{49}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
=> 3A = \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{98}\)
=> 3A = \(\frac{24}{49}\)
=> A = \(\frac{8}{49}\)
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)
Sửa 95.98 thành 1/(95.98) nhá
đặt
\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+..+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot97}\)
\(3A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot97}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{97}\\ 3A=\dfrac{95}{194}\\ A=\dfrac{95}{582}\)
Một cửa hàng bán được203 kg gạo.Số gạo còn lại là206 . Hỏi có tất cả bao nhiêu kg gạo?