K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Ta có:

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng phương pháp hệ số bất định ta có:Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy giá trị a, b, c cần tìm là a= 1, b= -1, c= 0.

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

5 tháng 2 2022

Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)

5 tháng 2 2022

\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)

viết lại biểu thức 

a: ĐKXĐ: x<>1; x<>-1

b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c: Để A nguyên thì x+1-2 chia hết cho x+1

=>\(x+1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{0;-2;-3\right\}\)

a: ĐKXĐ: x<>-1

b: \(A=\dfrac{\left(x+1\right)^2}{2\left(x+1\right)}=\dfrac{x+1}{2}\)

c: Thay x=1 vào A, ta được:
A=2/2=1

26 tháng 12 2021

a) ĐKXĐ: x≠ \(\dfrac{1}{2}\); x≠ \(\dfrac{-1}{2}\); x≠0

    A= \(\left(\dfrac{1}{2x-1}+\dfrac{3}{1-4x^2}-\dfrac{2}{2x+1}\right):\dfrac{x^2}{2x^2+x}\)

       = \(\left(\dfrac{2x+1-3-2\left(2x-1\right)}{4x^2-1}\right):\dfrac{x^2}{2x^2+x}\)

       =  \(\left(\dfrac{2x+1-3-4x+2}{4x^2-1}\right):\dfrac{x^2}{2x^2+x}\)

       = \(\dfrac{-4x}{\left(2x+1\right)\left(2x-1\right)}.\dfrac{x\left(2x+1\right)}{x^2}\)

       =  \(\dfrac{-4x^2}{x^2\left(2x-1\right)}\)

       = \(\dfrac{-4}{2x-1}\)

b) Tại x= -2 ta có A= \(\dfrac{-4}{2.\left(-2\right)-1}\)\(\dfrac{4}{5}\)

c)  A= 4 ta có \(\dfrac{-4}{2x-1}\)=4

                  ⇔ -4 = 4(2x-1)

                  ⇔ -4 = 8x-4 

                   ⇔ x = 0

d)  A=1 ta có \(\dfrac{-4}{2x-1}\)=1

                   ⇔  -4 = 2x-1

                    ⇔ x= \(\dfrac{-3}{2}\)

19 tháng 10 2019

Mn ơi giúp mình với. Please!!!!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 12 2020

a) \(ĐKXĐ:x\ne\pm2\)

b) 

\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right).\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right].\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right].\dfrac{x+2}{2}\\ =\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-6}{\left(x-2\right)\left(x +2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-3}{x-2}\)

c) Khi \(A=1\) ta có

\(1=\dfrac{-3}{x-2}\\ \Leftrightarrow x-2=\left(-3\right).1\\ \Leftrightarrow x-2=-3\\ \Leftrightarrow x=-3+2\\ \Leftrightarrow x=-1\)

Vậy \(A=1\Leftrightarrow x=-1\)

 

NM
29 tháng 12 2020

ta có

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}\)

điều kiện xác định \(\hept{\begin{cases}x^2-4\ne0\\2-x\ne0\\x+2\ne0\end{cases}\Leftrightarrow x\ne\pm2}\)

b.\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\frac{x+2}{2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=-\frac{3}{x-2}\)

c. khi \(x=1\Rightarrow A=-\frac{3}{x-2}=-\frac{3}{1-2}=3\)