Cho hình chóp S.ABC có S A = S B = S C = a , A S B ^ = C S B ^ = 60 ° , A S C ^ = 90 ° . Tính thể tích V của khối chóp S.ABC
A. V = a 3 2 12
B. V = a 3 2 4
C. V = a 3 6 3
D. V = a 3 3 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi O là tâm của tam giác A B C ⇒ S A ; A B C ^ = S A ; O A ^ = S A O ^ = 60 °
tam giác SAO vuông tại O, có
tan S A O ^ = S O O A ⇒ S O = tan 60 ° . a 3 3 = a ⇒ S A = O A 2 + S O 2 = 2 a 3 3
bán kính mặt cầu ngoại tiếp khối chóp là R = S A 2 2. S O = 2 a 3
vậy thể tích cần tính là V = 4 3 π R 3 = 4 3 π 2 a 3 3 = 32 π a 3 81
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Đáp án A
Kẻ H K ⊥ A C K ∈ A C ⇒ S A C ; A B C ^ = S K H ^ = 60 °
ta có A B = 3 A H ⇒ H K = 1 3 d B ; A C = 1 3 a 3 2 = a 3 6
tam giác SHK vuông tại H, có S H = tan S K H ^ . H K = a 2
vậy thể tích khối chóp S.ABC là V = 1 3 S H . S A B C = 1 3 . a 2 . a 2 3 4 = a 3 3 24