Tính giá trị biểu thức:
a) ( − 3 ) + ( − 32 ) + 12.
b) ( − 17 ) + 7 + ( − 6 ) .
c) ( + 12 ) − 7 − 13.
d) 12 − ( − 32 ) − 9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với a = 3,05 thì ta có:
\(a\times2,46\) \(=3,05\times2,46=7,503\)
b) Với \(a=\dfrac{15}{8}\) thì ta có:
\(\left(\dfrac{5}{6}+\dfrac{7}{12}\right):a\) \(=\left(\dfrac{5}{6}+\dfrac{7}{12}\right):\dfrac{15}{8}\) \(=\left(\dfrac{10}{12}+\dfrac{7}{12}\right)\times\dfrac{8}{15}\) \(=\dfrac{17}{12}\times\dfrac{8}{15}\) \(=\dfrac{34}{45}\)
a) Thay a=3,05 vào 2,46a, ta được:
\(2.46\cdot3.05=7.503\)
b) Thay \(a=\dfrac{15}{8}\) vào biểu thức \(\left(\dfrac{5}{6}+\dfrac{7}{12}\right):a\), ta được:
\(\left(\dfrac{5}{6}+\dfrac{7}{12}\right):\dfrac{15}{8}\)
\(=\dfrac{17}{12}\cdot\dfrac{8}{15}=\dfrac{34}{45}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
a) A= \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
Vì \(\left\{{}\begin{matrix}2=\sqrt{4}< \sqrt{5}\\2\sqrt{2}=\sqrt{8}>\sqrt{5}\end{matrix}\right.\) nên A = \(\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
= \(\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\)
= \(2\left(\sqrt{2}-1\right)\)
b) B = \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\) (B > 0)
Ta có:
B2 = \(6+2\sqrt{5}-2\sqrt{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}+6-2\sqrt{5}\)
= \(12-2\sqrt{36-20}\)
= \(12-8\)
= \(4\)
\(\Rightarrow\) B =\(\pm2\) nhưng vì B > 0 nên B = 2
Vậy B = 2
\(A=\dfrac{7}{3}+\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+\dfrac{5}{2}=3+\dfrac{221}{84}=\dfrac{473}{84}\)
a) (-12).(7-72)-25.(55-43)
=(-12).(-65)-25.12
=12.(65-25)
=12.40
=480
b) (39-19):(-2)+(34-22).5
=20:(-2)+12.5
=-10+60
=50
51/60 x 12/17 : 3/10= 51/60 x 12/17 x 10/3 = 6120/3060 = 2
5/12 : 7/4 - 25/18 : 35/6 = 5/12 x 4/7 - 25/18 x 6/35 = 5/21 - 5/21 = 0
kết bn ko tui cg hok lp 6 nè