giúp mình bài cuối mình cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp
\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)
Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)
Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))
\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)
./
Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)
Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)
\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác
Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))
\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)
Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q
Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)
\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)
Mặt khác BP song song MF (cùng song song AC)
\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)
\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)
Bài 4:
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
hay O,B,A,C cùng thuộc 1 đường tròn
Bài 5:
\(\sqrt{x+2021}-y^3=\sqrt{y+2021}-x^3\\ \Leftrightarrow\left(\sqrt{x+2021}-\sqrt{y+2021}\right)+\left(x^3-y^3\right)=0\\ \Leftrightarrow\dfrac{x-y}{\sqrt{x+2021}+\sqrt{y+2021}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\\ \Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+2021}+\sqrt{y+2021}}+x^2+xy+y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-y=0\\\dfrac{1}{\sqrt{x+2021}+\sqrt{y+2021}}+x^2+xy+y^2=0\left(1\right)\end{matrix}\right.\)
Dễ thấy \(\left(1\right)>0\) với mọi x,y
Do đó \(x-y=0\) hay \(x=y\)
\(\Leftrightarrow M=x^2+2x^2-2x^2+2x+2022=x^2+2x+1+2021\\ \Leftrightarrow M=\left(x+1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=-1\)
1.3 Giải phương trình:
a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\))
\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)
\(\Leftrightarrow2x=2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{2}\)(tm)
b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)
\(\Leftrightarrow x=13+6\sqrt{5}\)(tm)
c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))
\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)
\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm)
1.4: Phân tích thành nhân tử:
a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(\widehat{AEI}=\widehat{BEI}\) (chắn 2 cung bằng nhau AC và BC)
\(\Rightarrow\) theo định lý phân giác: \(\dfrac{EB}{AE}=\dfrac{IB}{IA}=\dfrac{\dfrac{R}{2}}{R+\dfrac{R}{2}}=\dfrac{1}{3}\)
Mặt khác 2 tam giác vuông AOH và AEB đồng dạng (chung góc A)
\(\Rightarrow\dfrac{OH}{OA}=\dfrac{EB}{AE}=\dfrac{1}{3}\)
Lại có \(OA=OD\Rightarrow OH=\dfrac{1}{3}OD\Rightarrow DH=\dfrac{2}{3}OD\)
O lại là trung điểm AB \(\Rightarrow H\) là trọng tâm ABD
\(\Rightarrow AH\) đi qua trung điểm BD hay K là trung điểm BD
Mà tam giác OBD vuông cân tại O \(\Rightarrow\) OK là trung tuyến đồng thời là đường cao
\(\Rightarrow OK\perp BD\)
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
3:
1: Gọi tuổi mẹ và tuổi con hiện nay lần lượt là x,y
Theo đề, ta có: x=2,3y và x-16=7,5(y-16)
=>x-2,3y=0 và x-7,5y=-120+16=-104
=>x=46 và y=20
Gọi số năm nữa để tuổi mẹ gấp đôi tuổi con là a
Theo đề, ta có
a+46=2a+40
=>-a=-6
=>a=6
2:
Xe đi 210m trong 30-16=14s
=>V=210/14=15m/s
Chiều dài là:
15*16=240(m)