Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, lấy điểm E thuộc cạnh AB sao cho AD=AE a) Chứng minh DB=EC b) Gọi O là giao điểm của DB và EC. Chứng minh và là các tam giác cân c) Chứng minh DE / / BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △ABD và △ACE có:
AB = AC (gt)
\(\widehat{A}\) chung
AD = AE (gt)
\(\Rightarrow\)△ABD = △ACE (c.g.c)
\(\Rightarrow\)DB = EC (cặp cạnh tương ứng)
b) Ta có :△ABD = △ACE
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) (cặp góc tương ứng)
Mà \(\widehat{ABC}=\widehat{ACB}\) ( △ABC cân tại đỉnh A)
\(\Rightarrow\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\)△OBC cân tại đỉnh O
\(\Rightarrow\)OB = OC
Ta có: DB = EC (cmt)
OB = OC
\(\Rightarrow\)DB - OB = EC - OC
\(\Rightarrow\)OE = OD
\(\Rightarrow\)△ODE cân đỉnh O (ĐPCM)
c) △OBC cân tại đỉnh O
\(\Rightarrow\)\(\widehat{OCB}=\frac{180^o-\widehat{BOC}}{2}\)
△ODE cân tại đỉnh O
\(\Rightarrow\widehat{DEO}=\frac{180^o-\widehat{DOE}}{2}\)
Mà \(\widehat{BOC}=\widehat{DOE}\)(đối đỉnh)
\(\Rightarrow\widehat{DEO}=\widehat{OCB}\)
Vì 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\)DE // BC (ĐPCM)
Sửa câu c: DE // BE thành DE // BC nhé
GT | △ABC cân tại A. D AC; E AB : AD = AE BD ∩ ED = { O } |
KL | a, DB = EC b, △OBC cân; △ODE cân c, DE // BE |
Bài giải:
a, Vì △ABC cân tại A (gt) => AB = AC
Xét △BAD và △CAE
Có: AB = AC (cmt)
BAC là góc chung
AD = AE (gt)
=> △BAD = △CAE (c.g.c)
=> DB = CE (2 cạnh tương ứng)
b, Vì △BAD = △CAE (cmt)
=> ABD = ACE (2 góc tương ứng) và ADB = CEA (2 góc tương ứng)
Ta có: CEA + CEB = 180o (2 góc kề bù)
ADB + BDC = 180o (2 góc kề bù)
Mà ADB = CEA (cmt)
=> CEB = BDC
Lại có: AB = AE + EB
AC = AD + DC
Mà AB = AC (gt) ; AD = AE (gt)
=> EB = DC
Xét △BOE và △COD
Có: OBE = OCD (cmt)
BE = CD (cmt)
BEO = CDO (cmt)
=> △BOE = △COD (g.c.g)
=> OB = OC (2 cạnh tương ứng) và OE = OD (2 cạnh tương ứng)
Xét △OED có: OE = OD (cmt) => △OED cân tại O
Xét △OBC có: OB = OC (cmt) => △OBC cân tại O
c, Xét △AOD có: AE = AD (gt) => △AOD cân tại A => AED = (180o - EAD) : 2 (1)
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> ED // BC (dhnb)
a) Xét ΔABD và ΔACE có:
AB=ACAB=AC (do ΔABC cân đỉnh A)
ˆA^ : góc chung
AD=AE (giả thiết)
⇒ΔABD=ΔACE (c.g.c)
⇒DB=EC (hai cạnh tương ứng)
b) ΔABD=ΔACE⇒ˆB1=ˆC1 (hai góc tương ứng)
Mà ˆABC=ˆACB (do ΔABC cân đỉnh A)
⇒ˆABC−ˆB1=ˆACB−ˆC1
⇒ˆOBC=ˆOCB
⇒ΔOBC cân đỉnh O (đpcm)
a: Xet ΔABD và ΔACE có
AD=AE
góc D=góc E
DB=EC
=>ΔABD=ΔACE
=>AB=AC
=>ΔABC cân tại A
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC
=>ΔAMB=ΔANC
=>BM=CN
c: góc IBC=góc MBD
góc ICB=góc NCE
mà góc MBD=góc NCE
nên góc ICB=góc IBC
=>ΔIBC cân tại I
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng
a: Xét ΔADB và ΔAEC có
AB=AC
\(\widehat{ADB}=\widehat{AEC}\)
DB=EC
Do đó: ΔADB=ΔAEC
Suy ra: AB=AC
hay ΔABC cân tại A
b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{MDB}=\widehat{NEC}\)
Do đó: ΔMBD=ΔNCE
Suy ra: BM=CN
c: \(\widehat{IBC}=\widehat{MBD}\)(đối đỉnh)
\(\widehat{ICB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)(ΔMBD=ΔNCE)
nên \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
`a)`
Có `Delta ABC ` cân tại `A(GT)=>AB=AC`
Xét `Delta ADB` và `Delta AEC` có:
`{:(AB=AC(cmt)),(hat(A)-chung),(AD=AE(GT)):}}`
`=>Delta ADB=Delta AEC(c.g.c)(đpcm)`
`b)`
Có `Delta ABC` cân tại `A=>hat(ABC)=hat(ACB)`
`=>hat(EBC)=hat(DCB)`
mà `hat(B_1)=hat(C_1)(Delta ADB=Delta AEC)`
`hat(B_1)+hat(B_2)=hat(EBC)`
`hat(C_1)+hat(C_2)=hat(DCB)`
nên `hat(B_2)=hat(C_2)`
`=>Delta IBC` cân tại `I`
`c)`
Có `AE=AD(GT)=>Delta AED` cân tại `A`
`=>hat(E_1)=(180^0-hat(A))/2(1)`
`Delta ABC` cân tại `A(GT)=>hat(ABC)=(180^0-hat(A))/2(2)`
Từ `(1)` và `(2)=>hat(E_1)=hat(ABC)`
mà `2` góc này ở vị trí đ/vị
nên `ED////BC(đpcm)`