K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Vì H là trực tâm tam giác ABC nên:

A H ⊥ C B ;    B H ⊥ A C ;    C H ⊥ B A ⇒ A H → .    C B → = 0 ;    B H → . A C → = 0 ;    C H → . B A → = 0

Ta có

A H → . H B → − H C → + B H → . H C → − H A → + C H → . H A → − H B →

= A H → . C B → + B H → . A C → + C H → . B A → = 0

CHỌN B

a) Vì M đối xứng với H qua BC nên BC là đường trung trực của MH

Suy ra: BH=BM và CH=CM

Xét ΔBHC và ΔBMC có 

BH=BM(cmt)

CH=CM(cmt)

BC chung

Do đó: ΔBHC=ΔBMC(c-c-c)

a: Ta có: M và H đối xứng nhau qua BC

nên BC là đường trung trực của MH

Suy ra: BH=BM và CH=CM

Xét ΔBHC và ΔBMC có 

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

NV
15 tháng 2 2022

Cách làm 2 câu tương tự nhau.

a.

\(\overrightarrow{AB}=\left(2;3\right)\Rightarrow\) đường thẳng AB nhận (3;-2) là 1 vtpt

Phương trình AB (qua A) có dạng:

\(3\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-1=0\)

\(\overrightarrow{HA}=\left(1;1\right);\overrightarrow{HB}=\left(3;4\right)\)

Do BC vuông góc AH nên nhận (1;1) là 1 vtpt

Phương trình BC (đi qua B) có dạng:

\(1\left(x-3\right)+1\left(y-4\right)=0\Leftrightarrow x+y-7=0\)

Do AC vuông góc HB nên nhận (3;4) là 1 vtpt

Phương trình AC (đi qua A) có dạng:

\(3\left(x-1\right)+4\left(y-1\right)=0\Leftrightarrow3x+4y-7=0\)

Câu b hoàn toàn tương tự

6 tháng 10 2018

Ta có:

Suy ra tam giác ABC vuông tại A do đó trực tâm H trùng với A

Vậy H( -1 ; 3)

Chọn B.

8 tháng 3 2018

Chọn D.

Gọi H (x; y) là trực tâm tam giác ABC nên 

Suy ra:

Vậy H(2; 2).

18 tháng 8 2015

a : Gọi O là giao của HK và CB, ta có:

S của tam giác CHB= \(\frac{1}{2}OH\cdot CB\)  

S của tam giác BKC=\(\frac{1}{2}KO\cdot CB\) 

Mà ta có K là điểm đối xứng với H qua BC => KO=HO

Nên ta có thể thay 

S của tam giác BKC=\(\frac{1}{2}OH\cdot CB\) 

Hay \(Sbkc=Sbhc\)

Nếu đúng thì cho mk xin **** nha