Cho hình chữ nhật ABCD. Qua E là một điểm bất kỳ nằm trên đường chéo AC, kẻ hai đường chéo FG//AD và HK//AB ( F ∈ AB, G ∈ DC, H ∈ AD, K ∈ DC ). Chứng minh rằng hai hình chữ nhật EFBK và EGDH có cùng diện tích.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: SEHDG = SADC – SAHE – SEGC.
SEFBK = SABC – SAFE – SEKC.
Để chứng minh SEHDG = SEFBK,
ta đi chứng minh SADC = SABC; SAHE = SAFE ; SEGC = SEKC.
+ Chứng minh SADC = SABC.
SADC = AD.DC/2;
SABC = AB.BC/2.
ABCD là hình chữ nhật ⇒ AB = CD, AD = BC
⇒ SADC = SABC.
+ Chứng minh SAHE = SAFE (1)
Ta có: EH // AF và EF // AH
⇒ AHEF là hình bình hành
Mà Â = 90º
⇒ AHEF là hình chữ nhật
⇒ SAHE = SAFE (2)
+ Chứng minh SEGC = SEKC
EK // GC, EG // KC
⇒ EGCK là hình bình hành
Mà D̂ = 90º
⇒ EGCK là hình chữ nhật
⇒ SEGC = SEKC (3).
Từ (1); (2); (3) suy ra đpcm.
AF // HE ( HK // AB )
AH // EF ( FC // AD )
\(\Rightarrow\)AHEF là hình bình hành
có : góc HAF = 90 độ ( ABCD là hình chữ nhật )
\(\Rightarrow\)AHEF là hình chữ nhật
EF // CG ( HK // AB // CD )
EG // CK ( FG // AD // BC )
\(\Rightarrow\)EGCK là hình bình hành
có góc GCK = 90 độ ( ABCD là hình chữ nhật )
\(\Rightarrow\)EGCK là hình chữ nhật
Ta có : diện tích ABC = 1/2 AB . BC = 1/2diện tích ABCD
diện tích ACD = 1/2 AD . DC = 1/2 diện tích ABCD
\(\Rightarrow\)Diện tích ABC = diện tích ACD
Tương tự : diện tích AEF = diện tích EHA
diện tích ECK = diện tích CFG
diện tích EFBK = diện tích ABC - diện tích AEF - diện tích ECK
diện tích EGDH = diện tích ACD - diện tích EHA - diện CEG
\(\Rightarrow\) diện tích EFBK = diện tích EGDH ( đpcm )
Xem hình 125 ta thấy:
SABC = SADC
SAFE = SAHE
SEKC = SEGC
Suy ra: SABC – SAFE – SEKC = SADC – SAHE - SEGC
hay SEFBK = SEGDH
ta có:
SABC = SADC
SAFE = SAHE
SEKC = SEGC
=> SABC – SAFE – SEKC = SADC – SAHE - SEGC
hay SEFBK = SEGDH
Theo giả thiết ta có FG//AD, HK//AB nên HE//AF và AH//EF.
Xét tứ giác AFEH có:
⇒ AFEH là hình bình hành.