Tổng bình phương các giá trị của x thõa mãn x^5= x^4+x^3+x^3+x^2+x+2 bằng.....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-5x+4=0\)
\(\Leftrightarrow\)\(x^2-x-4x+4=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy tổng các giá trị nguyên của x thỏa mãn là:
\(1+4=5\)
Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)
\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)
Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)
Bài 2 : Đặt A = \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)
Dấu ''='' xảy ra <=> x = 1
Vậy GTNN A là -4 <=> x = 1
Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)
Tổng các giá trị x là : \(1+4=5\)
3, Tổng các giá trị của x thỏa mãn:
\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-4x-x+4=0\)
\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5
\(x=-1;0;1;2;3\)
Tổng bình phương là
\(\left(-1+0+1+2+3\right)^2=5^2=25\)
Ủng hộ đi cho mình nhé
2 lần x^3 á cậu ?
x^5=x^4+x^3+x^2+x+2 như zầy mới đúng