K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2015

100x + 10y + z chia hết cho 21 nên cũng chia hết cho 3 và 7

ta có: x - 2y + 4z = (100x + 10y + z) - (99x + 12y -3z) mà 100x + 10y +z và 99x + 12y -3z đều chia hết cho 3 nên x - 2y + 4z chia hết cho 3

Có: 2.(x - 2y + 4z) = (100x + 10y + z) - (98x + 14y -7z) mà 100x + 10y +z và 98x+ 14y -7z đều chia hết cho 7 nên 2.(x - 2y + 4z) chia hết cho 7 mà 2 không chia hết cho 7 nên x - 2y + 4z chia hết cho 7

=> x - 2y + 4z đều chia hết cho 3 và 7 nên sẽ chia hết cho 21

16 tháng 10 2017

Trần thị Loan cho mk hỏi bn lấy 2 đâu ra mà nhân

7 tháng 2 2016

Giải: Do (100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21(100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21
nên 100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21
Do đó cả chiều thuận và đảo đều thoả mãn. 

 

    12 tháng 11 2019

    Cho 16a + 17 b chia hết cho 11 

    Mà ( 16a + 17b ) + ( 17a +16b ) = 33a + 33b = 11(3a + 3b ) chia hết cho 11

    => 17a + 16 b chia hết cho 11

    NV
    29 tháng 10 2020

    \(100x+10y+z⋮21\)

    \(\Rightarrow21\left(5x+z\right)-\left(100x+10y+z\right)⋮21\)

    \(\Rightarrow5x-10y+20z⋮21\)

    \(\Rightarrow5\left(x-2y+4z\right)⋮21\)

    Mà 5 và 21 là 2 số nguyên tố cùng nhau

    \(\Rightarrow x-2y+4z⋮21\)