K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

a) Ta có P = 4 x 2 ( x − 2 y ) 2 ( x + 2 y ) 2 . ( x + 2 y ) 2 16 x = x 4 ( x − 2 y ) 2  

Với x ≠ 0 ,   x ≠   ± 2 y  

b) Ta có Q = 16 x ( x 2 − 16 ) 2 . x 2 − 16 2 x = 8 16 − x 2  với x ≠ 0 ,    x ≠   ± 4

31 tháng 8 2021

a) A = 2x^2 + 2y^2

31 tháng 8 2021

a, \(A=\left(x-y\right)^2+\left(x+y\right)^2\)

\(=x^2-2xy+y^2+x^2+2xy+y^2\)

\(=2x^2+2y^2\)

25 tháng 12 2021

\(a.\left(3x-1\right)^2+\left(x+3\right)\left(2x-1\right)\)

\(=9x^2-6x+1-2x^2+x-6x+3\)

\(=7x^2-11x+4\)

31 tháng 8 2021

Tách ra mỗi câu một lần.

Dài quá không ai làm đâu.

Nhìn nản lắm.

Câu 3: 

a: \(49^2=2401\)

b: \(51^2=2601\)

c: \(99\cdot100=9900\)

a) Ta có: \(\left(x-\dfrac{1}{1-x}\right):\dfrac{x^2-x+1}{x^2-2x+1}\)

\(=\left(x+\dfrac{1}{x-1}\right):\dfrac{x^2-x+1}{\left(x-1\right)^2}\)

\(=\dfrac{x^2-x+1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{x^2-x+1}\)

\(=x-1\)

b) Ta có: \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\left(1-\dfrac{x}{y}\right)\cdot\dfrac{y^2}{x^3-y^3}\)

\(=\left(\dfrac{y^2}{y^2}+\dfrac{xy}{y^2}+\dfrac{x^2}{y^2}\right)\cdot\left(\dfrac{y-x}{y}\right)\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2}{y^2}\cdot\dfrac{-\left(x-y\right)}{y}\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-1}{y}\)

 

a: \(=\dfrac{\left|x+2\right|}{x-1}\)

b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)

c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)

26 tháng 6 2023

a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1\)

\(=\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot1+1^2\)

\(=\left[\left(2x+1\right)+1\right]^2\)

\(=\left(2x+2\right)^2\)

b) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)

\(=\left(x-y-x-y\right)^2\)

\(=\left(-2y\right)^2\)

\(=4y^2\)

26 tháng 6 2023

áp dụng HĐT : \(\left(A+B\right)^2=A^2+2AB+B^2\\ \left(A-B\right)^2=A^2-2AB+B^2\)

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)

\(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)

30 tháng 5 2022

a)` x(x - y) + y(x + y) `

`=x^2-xy+xy+y^2`

`=x^2+y^2`(1)

thay x= -6 ; y= 8 vào 1 ta đc

\(\left(-6\right)^2+8^2=36+64=100\)

b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `

`=x^3-xy-x^3-xy+yx^2-xy`

`=\(-3xy+yx^2\)(2)

thay `x= 1/2 và y = -100` ta đc

\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)