Cho tổng: M= 7^0+7^1+7^2+........+7^68+7^69. Hỏi tổng M có chia hết cho 4 không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(7^0+7^1)+(7^2+7^3)+....+(7^68+7^69)
M=8+7^2(1+7)+...+7^68.(1+7)
M=8+7^2.8+...+7^68.8
8.(1+7^2+...+7^68) Chia hết cho 4
tick cho mình nhé đúng rồi đấy
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
ko chia hết.Vì 1+2+3+.......+13 \(⋮\) 1+2+....+13 mà 14 ko\(⋮\) cho 1+2+.......+13
\(M=1+2+3+4+5+6+7+8+9+10+11+12+13+14\)
\(=\left(1+14\right)+\left(2+13\right)+\left(3+12\right)+...+\left(6+9\right)+\left(7+8\right)\)
\(=15+15+15+...+15+15\)
\(=15\times7=105\)
\(1+3+5+7+9+11+13\)
\(=\left(1+13\right)+\left(3+11\right)+\left(5+9\right)+7\)
\(=14+14+14+7=49\)
Ta có: \(105\div49=2\)dư \(7\)
Vậy \(M\)ko chia hết cho \(1+3+5+7+9+11+13\)
\(M=7^1+7^2+7^3+7^4+7^5+7^6\)
\(\Rightarrow M=\left(7^1+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(\Rightarrow M=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\left(1+7\right)\)
\(\Rightarrow M=7.8+7^3.8+7^5.8\)
\(\Rightarrow M=8.\left(7+7^3+7^5\right)⋮8\left(ĐPCM\right)\)
=7(7^0+7^1+7^2+7^3+7^4+7^5)
=7*19608
mà 19608 chia hết cho 8
Suy ra: 7*19608chia hết cho 8
Suy ra: 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
6 và 12
6 + 12 = 18 chia hết cho 6
7 và 14
7 + 14 chia hết cho 7
Nhận xét : nếu số a và b chia hết cho c thì tổng của a và b chia hết cho c
có
mình thêm ví dụ : 6 + 14 = 20 không chia hết cho 7
ghép 2 số liên tiếp thành 1 nhóm
tất cả các nhóm đều chia ết cho 8
=> D có chia hết cho 8
A=7^0+(7^1+7^2)+(7^3+7^4)+...+(7^79+7^80)
A=1+7(1+7)+7^3(1+7)+....+7^79(1+7)
A=1+7.8+7^3.8+....+7^79.8
A=1+8(7+7^3+...+7^79)
vì 8(7+7^3+..+7^79) chia hết cho 4
1 chia 4 dư 1
=> A chia 4 dư 1
Đúng nha
M = (70 + 71 )+(72 + 73 )+...+(768 + 769 )
= (1+7 )+72 (1+7)+...+ 768 (1+7)
=8.(1+72 +...+768 )
=>M chia hết cho 4