Cho hàm số Tìm tất cả giá trị của a để hàm số đã cho liên tục tại điểm x = 0
A. a = 1
B. a = 3
C. a = 2
D. a = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
lim x → 0 + f ( x ) = lim x → 0 + 1 + 2 x − 1 x = lim x → 0 + 1 + 2 x − 1 x 1 + 2 x + 1 = lim x → 0 + 2 1 + 2 x + 1 = 1
lim x → 0 − f ( x ) = lim x → 0 − ( 3 x + a − 1 ) = a − 1
Để hàm số liên tục tên R <=> hàm số liên tục tại x=0
⇔ a − 1 = 1 ⇔ a = 2
Đáp án B. lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2
Chú ý giới hạn đặc biệt sau: lim u → 0 e u - 1 u = 1 .
lim x → 0 e a x - 1 a x = 1 ⇔ lim x → 0 e a x - 1 2 x = a 2 và lim x → 0 e 3 x - 1 3 x = 1 ⇔ lim x → 0 e 3 x - 1 2 x = 3 2
Do đó lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2
Mà hàm số liên tục tại x = 0 ⇒ lim x → 0 f x = f 0 ⇔ a - 3 2 = 1 2 ⇔ a = 4 .
Đáp án C.
Ta có
Mặt khác
Hàm số liên tục tại điểm x = 0