Nếu lấy một số có hai chữ số chia cho tích hai chữ số của nó thì được thương là 2 và dư là 18. Nếu lấy tổng bình phương các chữ số của số đó cộng với 9 thì được số đã cho. Hãy tìm số đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm có dạng: \(\overline{ab}\) \(\left(a,b\in N;a,b>0\right)\)
Thương của số cần tìm với tích hai chữ số của nó có dạng:\(\overline{ab}:\left(ab\right)\).
Theo giả thiết ta có: \(\overline{ab}=2ab+18\).
Tổng bình phương các chữ số của số cần tìm là: \(a^2+b^2+9=\overline{ab}\).
Ta có hệ phương trình: \(\left\{{}\begin{matrix}2ab+18=\overline{ab}\\a^2+b^2+9=\overline{ab}\end{matrix}\right.\)\(\Rightarrow a^2+b^2+9=2ab+18\)\(\Leftrightarrow\left(a-b\right)^2=9\)\(\Leftrightarrow\left|a-b\right|=3\).
Th 1. \(a-b=3\)\(\Leftrightarrow a=b+3\). Khi đó:
\(2ab+18=\overline{ab}\)\(\Leftrightarrow2ab+18=10a+b\)\(\Leftrightarrow2\left(b+3\right)b+18=10\left(b+3\right)+b\)\(\Leftrightarrow2b^2-5b-12=0\)\(\Leftrightarrow\left\{{}\begin{matrix}b=4\left(tm\right)\\b=\dfrac{-3}{2}\left(l\right)\end{matrix}\right.\).
Với \(b=4\) ta có \(a=3+b=3+4=7\). Vậy số đó là 73.
Th2: \(a-b=-3\)\(\Leftrightarrow a=b-3\). Khi đó:
\(2ab+18=10a+b\)\(\Leftrightarrow2\left(b-3\right)b+18=10\left(b-3\right)+b\)
\(\Leftrightarrow2b^2-17b+48=0\) (Vô nghiệm).
Vậy số cần tìm là: 73.
Gọi ba chữ số của số đó theo thứ tự hàng trăm, hàng chục, hàng đơn vị là a, b, c (0 < a ≤ 9; 0 ≤ b, c ≤ 9). Ta được hệ phương trình
Giải hệ phương trình này tốn nhiều thời gian, không đáp ứng yêu cầu của một bài trắc nghiệm.
Do đó ta phải xét các phương án
- Với phương án A, tổng các chữ số là 10, do đó chia 172 cho 10 được thương là 17 và dư là 2 nên phương án A bị loại.
- Với phương án B, tổng các chữ số là 17. Đổi chữ số hàng trăm cho chữ số hàng chục ta được số 926, số này chia cho 17 không thể có thương là 30, nên phương án B bị loại.
- Với phương án D, nếu đổi chữ số hàng trăm với chữ số hàng chục ta được 857, chia số này cho tổng các chữ số là 20 không thể có thương là 34 nên phương án D bị loại.
Đáp án: C
Gọi số tự nhiên có 2 chữ số là ab (0<=a,b<=9;a khác 0; a,b là số tự nhiên)
Vì tổng 2 chữ số là 9 => a+b= 9 (1)
Khi lấy số đó chia số ngược lại thì thương là 2 dư 18
\(\Rightarrow\overline{ab}=2\cdot\overline{ba}+18\\ \Leftrightarrow10a+b=20b+2a+18\Leftrightarrow8a-19b=18\left(2\right)\)
Từ (1),(2) ta có hệ phương trình
\(\left\{{}\begin{matrix}a+b=9\\8a-19b=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=9-a\\8a-19\left(9-a\right)=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=7\\b=2\end{matrix}\right.\left(t.m\right)\)
Vậy số phải tìm là 72
Gọi số cần tìm là ab ( 0 < a < 10 ; b < 10 ). Theo đầu bài ta có:
ab : ( a + b ) = 5 ( dư 12 )
=> ab = 5 * ( a + b ) + 12
=> 10a + b = 5a + 5b + 12
=> ( 10a - 5a ) + ( b - 5b ) = 12
=> 5a - 4b = 12
Do 12 chia hết cho 4 mà 4b chia hết cho 4 nên 5a chia hết cho 4.
Mà ( 5 ; 4 ) = 1 nên a chia hết cho 4. Kết hợp với điều kiện trên suy ra: a = { 4 ; 8 }
- Nếu a = 4 thì b = ( 5 * 4 - 12 ) : 4 = 2
Khi đó a + b = 4 + 2 = 6 bé hơn 13, nghĩa là số chia bé hơn số dư ( vô lí )
- Nếu a = 8 thì b = ( 5 * 8 - 12 ) : 4 = 7
Khi đó a + b = 8 + 7 = 15 lớn hơn 13, nghĩa là số chia lớn hơn số dư ( hợp lí )
Vậy số cần tìm là 87.
số cần tìm là 98 nhà bán , mik kiểm tra lại rồi , chắc là đúng
Gọi a là chữ số hàng chục, b là chữ số hàng đơn vị. Điều kiện a, b nguyên 1 ≤ a ≤ 9 và 0 ≤ b ≤ 9. Ta có:
'
Trường hợp 1
a - b = 3 ⇒ a = b + 3
Thay vào phương trình đầu của hệ phương trình ta được:
11b + 30 = 2(b + 3)b + 18 ⇒ 2 b 2 - 5 b + 12 = 0
Phương trình cuối có hai nghiệm: b 1 = 4 , b 2 = -3/2
Giá trị b 2 = -3/2 không thỏa mãn điều kiện 0 ≤ b ≤ 9 nên nên bị loại.
Vậy b = 4, suy ra a = 7.
Trường hợp 2
a - b = - 3 ⇒ a = b - 3
Thay vào phương trình của hệ phương trình ra được
11b - 30 = 2(b - 3)b + 18 ⇒ 2 b 2 - 17 b + 48 = 0
Phương trình này vô nghiệm.
Vậy số phải tìm là 74.