Cho góc xOy. Tia Oz là tia phân giác góc xOy. Lấy điếm A thuộc tia Oz ( A ≠ O ) . Kẻ AB vuông góc với Ox, AC vuông góc với Oy ( B ∈ O x , C ∈ O y ) . Chứng minh △ O A B = △ O A C .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta OAB\)và \(\Delta OAC\)có :
\(\widehat{OBA}=\widehat{OCA\left(=90^o\right)}\)
OA là cạnh chung
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta OAB=\Delta OAC\left(ch-gn\right)\)
a)
Xét \(\Delta\)OAC và \(\Delta\)OBC có:
^CAO = ^CBO ( = 90\(^o\))
OC chung
^AOC = ^BOC ( OC là phân giác ^xOy)
=> \(\Delta\)OAC = \(\Delta\)OBC ( cạnh huyền - góc nhọn) => OA = OB
b) \(\Delta\)OAC = \(\Delta\)OBC => CA = CB ; ^BCO = ^ACO
Xét \(\Delta\)IAC và \(\Delta\)I BC có: CA = CB ; ^BCI = ^ACI ( vì ^BCO = ^ACO ) ; CI chung
=> \(\Delta\)IAC = \(\Delta\)IBC ( c.g.c) (1)
=> IA = IB => I là trung điểm AB (2)
c) từ (1) => ^AIC = ^BIC mà ^AIC + ^BIC = 180\(^o\)
=> ^AIC = ^BIC = \(90^o\)
=> CI vuông góc AB
=> CO vuông goác AB tại I (3)
Từ (2) ; ( 3) => CO là đường trung trực của đoạn thẳng AD.
a: Xet ΔOAP vuông tại A và ΔOBP vuông tại B co
OP chung
góc AOP=góc BOP
=>ΔOAP=ΔOBP
=>OA=OB
=>ΔOAB cân tại O
b: ΔOAB cân tại O
mà OP là phân giác
nên OP vuông góc AB
a/Xét tam giác OCA và tam giác OCB:
OC chung
OAC=OBC(90 độ)
Góc AOC=BOC(Phân giác Oz)
=> Tam giác OCA=OCB(ch-gn)
=> CA=CB(cạnh tương ứng)
b/ Xét tam giác CAF và tam giác CBE:
Góc ACF=BCE(đối đỉnh)
Góc CBE=CAF(90 độ)
AC=CB(câu a)
=> Tma giác CAF=tam giác CBE(ch-gn)
=> CF=CE(cạnh tương ứng)
=> Tam giác CEF cân tại C
c/Xét tam giác vuông CBE có:
CE là cạnh huyền.
=> CE>CB Mà CB=CA
=> CE>CA(đpcm)
Bạn tự vẽ hình nha
b.
Xét tam giác AFC và tam giác BEC có:
FAC = EBC ( = 90 )
AC = BC (theo câu a)
ACF = BCE (2 góc đối đỉnh)
=> Tam giác AFC = Tam giác BEC (g.c.g)
=> CF = CE (2 cạnh tương ứng)
=> Tam giác CEF cân tại C
c.
Tam giác BCE vuông tại B có:
BC < CE (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà BC = AC (theo câu a)
=> AC < CE
Chúc bạn học tốt