K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

19 tháng 11 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC, ta có:

∠A +∠B +∠C = 180o (tổng ba góc trong tam giác)

⇒∠B +∠C = 180 - ∠A = 180 - 60 = 120o

+) Vì BD là tia phân giác của ABC nên: ∠(B1 ) = ∠(B2) = 1/2 ∠B

Vì CE là tia phân giác của góc ACB nên: ∠(C1 ) = ∠(C2) = 1/2 ∠ C

Do đó:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔBIC, ta có:

∠(BIC) = 180o(∠(B1 ) + ∠(C1) = 180o - 60o = 120o

Kẻ tia phân giác ∠(BIC) cắt cạnh BC tại K

Suy ra: ∠(I2 ) = ∠(I3 ) = 1/2 ∠(BIC) = 60o

Ta có: ∠(I1 ) + ∠(BIC) = 180o (hai góc kề bù)

⇒ ∠(I1 ) = 180o-∠(BIC) = 180o - 120o = 60o

∠(I4 ) = ∠(I1) = 60o(vì hai góc đối đỉnh)

Xét ΔBIE và ΔBIK, ta có

∠(B2) = ∠(B1) (vì BD là tia phân giác của góc ABC)

BI cạnhchung

∠(I1) = ∠(I2) = 60o

Suy ra: ΔBIE = ΔBIK(g.c.g)

IK = IE (hai cạnh tương ứng) (1)

Xét ΔCIK và ΔCID, ta có

∠(C1) = ∠(C2) ( vì CE là tia phân giác của góc ACB).

CI cạnh chung

∠(I3) = ∠(I4) = 60o

Suy ra: ΔCIK = ΔCID(g.c.g)

IK = ID (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: IE = ID

1 tháng 1 2021

thanks bn nhìu

a: \(\widehat{B}+\widehat{C}=130^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)

hay \(\widehat{BIC}=115^0\)

b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)

nên ΔDAI cân tại D

a: \(\widehat{B}+\widehat{C}=130^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)

hay \(\widehat{BIC}=115^0\)

b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)

nên ΔDAI cân tại D

30 tháng 12 2015

ai tick đến 190 thì mik tick cho cả đời

22 tháng 5 2016

32 thui

9 tháng 1 2022

Xét △ ABC có:

IB là tia phân giác \(\widehat{ABC}\)

IC là tia phân giác \(\widehat{ACB}\)

⇒ I là điểm đồng quy của 3 tia phân giác △ ABC

Suy ra:  AI là phân giác \(\widehat{BAC}\)

Suy ra: I là tâm đường tròn nội tiếp △ ABC

R = d ( I, AB )   =  d ( I, AC )

⇒ ID = IE

Xét △ ADI và △ AIE có

   AI chung

  \(\widehat{DAI}=\widehat{IAE}\)

   ID = IE

⇒ △ADI = △AIE ( c - g - c )

⇒ AD = AE