Cho tam giác ABC vuông tại A. Vẽ . Gọi AD là phân giác
của góc HAC. ( D thuộc BC) Vẽ DM//AH ( M thuộc AC )
a) CMR: DM ⊥ BC
b) CMR : góc DAM=góc ADM
c) CMR: góc CAH= góc ABC
d) CMR: góc BAD=góc BDA
giúp mk nhé, gấp lắm rồi. mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
a.xét tgiac ABD có AB=BD(gt)
nên theo định nghĩa ta có tgiac ABD cân tại B nên => góc BAD=góc BDA
Bạn tự vẽ hình nha
a.
BA = BD (gt)
=> Tam giác BAD cân tại B
=> BAD = BDA
b.
Tam giác HAD vuông tại H có: HAD + BDA = 90
Ta có: KAD + BAD = 90 (2 góc phụ nhau)
mà BAD = BDA (theo câu a)
=> HAD = KAD
=> AD là tia phân giác của HAK
c.
Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:
HAD = KAD (AD là tia phân giác của HAK)
AD là cạnh chung
=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Chúc bạn học tốt
Bạn tự vẽ hình nha
a.
BD = BA (gt)
=> Tam giác BDA cân tại A
=> BAD = BDA
b.
Tam giác HDA vuông tại H có: HAD + BDA = 90
Ta có: KAD + BAD = 90 (2 góc phụ nhau)
mà BAD = BDA (theo câu a)
=> HAD = KAD
=> AD là tia phân giác của HAK
c.
Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:
AD là cạnh chung
DAH = DAK (AD là tia phân giác của HAK)
=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)
=> AK = AH (2 cạnh tương ứng)
d.
Tam giác ABH có: AB < BH + AH (bất đẳng thức tam giác)
Tam giác ACH có: AC < CH + AH (bất đẳng thức tam giác)
=> AB + AC < BH + CH + AH + AH
=> AB + AC < BC + 2AH
Chúc bạn học tốt
a/ Vì AB=BD nên tam giác ABD cân tại B
Mà Góc BAD và góc ADB là 2 góc ứng với cạnh đáy nên 2 góc đó bằng nhau.
Vì AD là tia phân giác của HAB nên KD = DH
xét tam giác BDK và tam giác IDH
BKD = IHD = 90độ
KD = DH ( cmt )
BDK = IDH ( 2 góc đối đỉnh )
suy ra tam giác BDK = tam giác IDH ( g.c.g)
suy ra IH = KB ( 2 cạnh t.ư)
b) vì tam giác BDK = tam giác IDH (câu a )nên BKI = KIH
xét tam giác BIK và tam giác HKI
BK = IH ( câu a )
BKI = KIH ( cmt )
KI - cạnh chung
suy ra tam giác BIK = ta giác HKI ( c.g.c)
suy ra BIK = IKH ( 2 góc t.ư )
mà 2 góc này ở vị trí SLT nên HK//IB
c) vì KD vuông góc vs AK
AC vuông góc vs AK suy ra AC // KD ( quan hệ từ vuông góc đến song song )
suy ra KDA = DAC ( 2 góc SLT) ( 1 )
Xét tam giác KDA và tam giác HDA
DKA = DHA = 90độ
DA - cạnh huyền
KAD = DAH
suy ra tam giác KDA = tam giác HDA (c.h.g.n)
suy ra KDA= ADH (2 góc t.ư) (2)
từ (1) và (2) suy ra CDA= DAC (2 góc t. ư)
suy ra tam giác DAC cân tại C
suy ra CM vừa là tia phân giác vừa là đường cao của tam giác DAC
Mà đường cao AH và đường cao CM cắt nhau tại N nên N là trực tâm của tam giác ACD
a: Ta có: DM//AH
AH\(\perp\)BC
Do đó: DM\(\perp\)BC
đề bài bị thiếu hả ba :) ????????/