K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

Đáp án B

2 tháng 1 2021

Câu 1: Gọi 3 số là a;b;c

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)

2 tháng 1 2021

Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)

\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)

Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt

\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)

(2) có 2 nghiệm \(t_1< t_2\)

=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)

\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)

 

20 tháng 12 2019
https://i.imgur.com/0504RrG.jpg
25 tháng 4 2019

em moi hoc lo 8

NV
25 tháng 4 2019

\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)

Tổng 16 số hạng đầu tiên:

\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)

11 tháng 3 2018

Chọn D.

Cấp số cộng 1,4,7,.. có số hạng đầu u1 = 1 và công sai d = 3.

4 tháng 9 2019

Chọn D.

Cấp số cộng 1,4,7,.. có số hạng đầu u1 = 1 và công sai d = 3

25 tháng 12 2020

Hmm, cái công thức Sn mỗi lần viết dài kinh :(

\(u_5=u_1+4d=15;u_9=u_1+8d=-1\) \(\Rightarrow\left\{{}\begin{matrix}d=...\\u_1=...\end{matrix}\right.\)

\(\Rightarrow u_{100}=u_1+99d=...\)

\(u_1=u_1\)

\(u_2=u_1+d\)

\(u_3=u_1+2d\)

.....

\(u_n=u_1+\left(n-1\right)d\)

\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1.\left(n-1\right)d=n.u_1+d+2d+...+\left(n-1\right)d\)

\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)

Thay số vô và ... bấm máy, chắc zậy :))