Xét tứ diện ABCD có các cạnh AB=BC=CD=DA=1 và AC, BD thay đổi. Giá trị lớn nhất của thể tích khối tứ diện ABCD bằng:
A. 2 3 27
B. 4 3 27
C. 2 3 9
D. 4 3 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi I, H lần lượt là trung điểm AC, BD. Ta có B I ⊥ A C D I ⊥ A C ⇒ A C ⊥ I B D và V I . B C D = V I . A B D
Lại có I B = A B 2 - A I 2 = 1 - x 2 4 ,với AC = BD = x.
Và I H = I B 2 - B H 2 = 1 - x 2 4 - x 2 4 = 1 - x 2 2
Diện tích tam giác IBD là S ∆ I B D = 1 2 I H . B D = x 2 1 - x 2 2
Suy ra V A B C D = 2 V I . B C D = 2 3 I C . S I B D = x 3 . x 2 1 - x 2 2 = x 2 6 1 - x 2 2
Xét hàm số f x = x 2 2 - x 2 → m a x f x = 4 6 9
Vậy thể tích lớn nhất là V m a x = 4 6 9 : 6 2 = 2 3 27
Chọn B
Gọi M, N lần lượt là trung điểm AD và BC.
Theo giả thiết ta có: ABD và ACD là các tam giác cân có M là trung điểm của AD nên:
Và có BM=CM => ΔMBC cân tại M
Trong tam giác ΔMBC có MN vừa là đường cao vừa là trung tuyến nên
Khi đó diện tích tam giác ΔMBC là:
Thể tích tứ diện ABCD là:
Đặt AD=x, BC=y ta có:
Dấu bằng xảy ra khi x=y.
Ta lại có:
Dấu bằng xảy ra khi:
Vậy giá trị lớn nhất của thể tích khối tứ diện ABCD là:
Chọn A
Gọi M, N lần lượt là trung điểm của BD, AC. Đặt BD = 2x, AC = 2y (x, y > 0).