Thực hiện phép tính:
a) ( 12 + 22 + ... + 20122)(91 - 273:3)
c) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(1\frac{5}{7}\)-\(\frac{9}{7}\)*\(\frac{16}{9}\)
=\(\frac{12}{7}\)-\(\frac{16}{7}\)
=\(\frac{-4}{7}\)
b. \(\frac{-5}{8}\):\(\frac{1}{4}\)-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=\(\frac{-5}{8}\cdot\)4-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=4*(\(\frac{-5}{8}\)-\(\frac{6}{13}\))+\(\frac{3}{8}\)
=4*\(\frac{-113}{104}\)+\(\frac{3}{8}\)
=\(\frac{-113}{26}\)+\(\frac{3}{8}\)
=\(\frac{-413}{104}\)
c.( \(\frac{3}{8}\)+\(\frac{-1}{4}\)-\(\frac{5}{12}\)):\(\frac{1}{3}\)
=\(\frac{-7}{24}\)*3
=\(\frac{-7}{8}\)
Học tốt
a) \(\left(1^2+2^2+3^2+....+2012^2\right).\left(91-273:3\right)\)
\(=\left(1^2+2^2+3^2+...+2012^2\right).\left(91-91\right)\)
\(=0\)
b) \(\left(-284\right).172+\left(-284\right).\left(-72\right)=\left(-284\right).\left(172+-72\right)\)
\(=\left(-284\right).100\)
\(=-28400\)
c) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
\(=\left(\frac{1}{5}+\frac{-1}{5}\right)+\left(\frac{1}{6}+\frac{-1}{6}\right)+\left(\frac{1}{7}+\frac{-1}{7}\right)+\left(\frac{1}{8}+\frac{-1}{8}\right)+\frac{1}{9}\)
\(=0+0+0+0+\frac{1}{19}\)
= 0
dễ Thấy rằng :
\(\frac{1}{5}>\frac{1}{10}\text{ nên }\frac{1}{5}+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)>\frac{1}{10}+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\)
Vậy ta có a > b
A = 1/5 + 1/6 + 1/7 + 1/8 + 1/9
B = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
Ta thấy cả A và B đều có các số hạng là 1/6; 1/7; 1/8 và 1/9.
Bỏ các số hạng đó, A chỉ còn 1/5 và B chỉ còn 1/10.
Vì 1/5 > 1/10 nên A > B.
Chúc bạn học tốt.
😁😁😁
a) Biểu thức A có một số thập phân, ta nên đổi số này thành phân số.
\(A=\frac{-3}{8}.16\frac{8}{17}-0,375.7\frac{9}{17}\)
\(A=\frac{-3}{8}.16\frac{8}{17}-\frac{3}{8}.7\frac{9}{17}\\ =\frac{-3}{8}.\left(16\frac{8}{17}+7\frac{9}{17}\right)\\ =\frac{-3}{8}.\left(16+7+\frac{8}{17}+\frac{9}{17}\right)\\ =\frac{-3}{8}.24=-9\)
b) Ta đổi các số thập phân thành phân số
\(B=\frac{0,6-\frac{1}{3}+\frac{3}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
\(B=\frac{\frac{3}{5}-\frac{1}{3}+\frac{3}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\\ =\frac{3.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{2.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}{7.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\)
Dễ nhận thấy \(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\ne0\) và \(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\ne0\) nên trong các phân số có tử và mẫu cùng chứa các thừa số khác 0 này ta có thể rút gọn được và đi đến kết quả:
\(B=\frac{3}{7}-\frac{2}{7}=\frac{1}{7}\)