Sudoku là một loại trò chơi lôgic và cách chơi là điền số từ 1 đến 9 vào những ô trống sao cho mỗi cột dọc, mỗi hàng ngang, mỗi phân vùng nhỏ (ô 3x3) có đủ các số từ 1 đến 9 mà không được lặp lại. Có bao nhiêu bảng Sudoku có thể tạo ra?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số từ 1 đến 14 là : (14 + 1) x 14 : 2 = 105.
Tổng các số của 4 hàng là : 30 x 4 = 120.
Tổng bốn số ở bốn ô có dấu * là : 120 - 105 = 15.
Cặp bốn số ở bốn ô có dấu * là một trong các trường hợp sau:
15 = 1 + 2 + 3 + 9 (1)
= 1 + 2 + 4 + 8 (2)
= 1 + 2 + 5 + 7 (3)
= 1 + 3 + 4 + 7 (4)
= 1 + 3 + 5 + 7 (5)
= 2 + 3 + 4 + 6 (6)
Từ mỗi trường hợp này có thể tạo nên nhiều cách sắp xếp các số khác nhau.
Bài 1/ Ta có
13n + 7 chia hết cho 5
=> 10n + 3n + 10 - 3 chia hết cho 5
=> 3n - 3 chia hết cho 5
=> 3(n - 1) chia hết cho 5
=> n - 1 chia hết cho 5
=> n - 1 = 5k
=> n = 5k + 1
Vậy với n = 5k + 1(k tự nhiên) thì 13n + 7 chia hết cho 5
Tổng của 9 số theo hàng là
480+570+660=1710
Tổng 9 số theo cột là
540+572+509=1621
Tổng 9 số theo hàng khác tổng 9 số theo cột nên không xảy ra trường hợp này