K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

11 tháng 3 2018

NV
6 tháng 2 2021

\(AB=\sqrt{SA^2+SB^2}=a\sqrt{2}\)

\(AC=\sqrt{SA^2+SC^2-2SA.SC.cos120^0}=\sqrt{3}\)

\(BC=\sqrt{SB^2+SC^2-2SB.SC.cos60^0}=a\)

\(\Rightarrow AB^2+BC^2=AC^2\Rightarrow\Delta ABC\) vuông tại B

Gọi H là hình chiếu vuông góc của S lên (ABC) \(\Rightarrow\) H là tâm đường tròn ngoại tiếp ABC (do SA=SB=SC)

\(\Rightarrow\) H trùng trung điểm AC

Gọi M là trung điểm SA \(\Rightarrow MH||SC\Rightarrow\) góc giữa SC và (SAB) bằng góc giữa MH và (SAB)

Gọi N là trung điểm AB \(\Rightarrow HN\perp AB\Rightarrow AB\perp\left(SHN\right)\)

Trong mp (SHN), kẻ \(HK\perp SN\Rightarrow HK\perp\left(SAB\right)\)

\(\Rightarrow\widehat{KMH}\) là góc giữa SC và (SAB)

\(SH=\sqrt{SA^2-\left(\dfrac{AC}{2}\right)^2}=...\)

\(MH=\dfrac{1}{2}SA=...\) (trung tuyến ứng với cạnh huyền)

\(NH=\dfrac{1}{2}BC=...\) (đường trung bình)

\(\Rightarrow\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{NH^2}\Rightarrow HK=...\)

\(\Rightarrow sin\widehat{KMH}=\dfrac{HK}{MH}=...\)

16 tháng 2 2021

cảm ơn bạn nha

25 tháng 3 2018

10 tháng 3 2017

Đáp án B

Ta có: S I ⊥ A B C ⇒ ∆ S I A = ∆ S I B = ∆ S I C  (cạnh huyền- cạnh góc vuông)

Suy ra IA = IB = IC hay I là tâm đường tròn ngoại tiếp tam giác ABC.

Đặt SA = SB = SC = x ⇒ B C = x 3 A C = x A B = x 2 ⇒ ∆ A B C  vuông tại A do A B 2 + A C 2 = B C 2  

Do đó I là trung điểm của BC.

6 tháng 5 2019

19 tháng 10 2019

Chọn đáp án A

Gọi D là hình chiếu của điểm S lên (ABC)

25 tháng 8 2017

Chọn A

5 tháng 12 2019

Chọn A

Chọn C

20 tháng 5 2019

Chọn D.

Theo một kết quả cơ bản của hình học vectơ ta có