Tìm giá trị lớn nhất của hàm số f(x) = sinx + cos2x trên 0 ; π là
A. 9 8
B. 5 4
C. 2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=e^{sinx}-sinx-1\)
\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)
\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)
\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)
\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)
Đáp án A
Ta có: f x = sin x + 1 - 2 sin 2 x . Đặt t = sin x , t ∈ 0 ; 1 ⇒ g t = - 2 t 2 + t + 1 , t ∈ 0 ; 1
Khi đó g ' t = - 4 t + 1 = 0 ⇔ t = 1 4 . Mà g 0 = 1 ; g 1 4 = 9 8 ; g 1 = 0 ⇒ m a x 0 ; π f x = 9 8 .