K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2023

a,Vì tam giác ABC đều => BD,CE vừa là tia phân giác vừa là đường cao=>BD vuông góc AC và CE vuông góc AB 

b, vì hai tia phân giác BD và CE cắt nhau tại O suy ra O là tâm tam giác ABC suy ra OA = OB = OC (tính chất)

c, ta có góc AOB + góc BOC + góc COA = 360 độ mà  AOB = BOC= COA Suy ra 3 AOB= 360 suy ra AOB = 120 vậy AOB=BOC=COA=120 

19 tháng 11 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC, ta có:

∠A +∠B +∠C = 180o (tổng ba góc trong tam giác)

⇒∠B +∠C = 180 - ∠A = 180 - 60 = 120o

+) Vì BD là tia phân giác của ABC nên: ∠(B1 ) = ∠(B2) = 1/2 ∠B

Vì CE là tia phân giác của góc ACB nên: ∠(C1 ) = ∠(C2) = 1/2 ∠ C

Do đó:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔBIC, ta có:

∠(BIC) = 180o(∠(B1 ) + ∠(C1) = 180o - 60o = 120o

Kẻ tia phân giác ∠(BIC) cắt cạnh BC tại K

Suy ra: ∠(I2 ) = ∠(I3 ) = 1/2 ∠(BIC) = 60o

Ta có: ∠(I1 ) + ∠(BIC) = 180o (hai góc kề bù)

⇒ ∠(I1 ) = 180o-∠(BIC) = 180o - 120o = 60o

∠(I4 ) = ∠(I1) = 60o(vì hai góc đối đỉnh)

Xét ΔBIE và ΔBIK, ta có

∠(B2) = ∠(B1) (vì BD là tia phân giác của góc ABC)

BI cạnhchung

∠(I1) = ∠(I2) = 60o

Suy ra: ΔBIE = ΔBIK(g.c.g)

IK = IE (hai cạnh tương ứng) (1)

Xét ΔCIK và ΔCID, ta có

∠(C1) = ∠(C2) ( vì CE là tia phân giác của góc ACB).

CI cạnh chung

∠(I3) = ∠(I4) = 60o

Suy ra: ΔCIK = ΔCID(g.c.g)

IK = ID (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: IE = ID

1 tháng 1 2021

thanks bn nhìu

3 tháng 12 2016

tam giác ABC có góc B=góc C

=> tam giác ABC cân tại A

=> AB=AC

Ma goc ACE = 1/2 ACB

góc ABD = 1/2 ABC (Vì CE và BD là tia phân giác của góc ACB và ABC)

ma ACB=ABC

=> ACE=ABD

Xét tam giác ABD và tam giác ACE

Có AB=AC(chứng minh trên)

goc A chung

ABD=ACE (chứng minh trên)

=> BD=CE (2 góc tương ứng)

19 tháng 1 2022

mình là màu xanh cho đồng cỏ còn bạn là màu đỏ trong tim mình >_<

7 tháng 1 2022

Xét t/g ABC có ABC^=ACB^

=> t/g ABC cân tại A.

=> AB = AC (t/c).

Có ABC^=ACB^

 

=> ABC^2=ACB^2

 

=> ABD^=ACE^ (do BD, CE là pg góc B và C)

Xét t/g ABD và t/g ACE có

A^ :chung

AB = AC (cmt)

ABD^=ACE^

=> t/g ABD = t/g ACE (g.c.g)

=> BD = CE (2 cạnh t/ứ).

19 tháng 1 2022

bằng nhau

 

19 tháng 1 2022

bằng nhau pạn ạ

9 tháng 12 2021

Kẻ phân giác IH của \(\widehat{BIC}\)

Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)

Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)

Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)

Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)

Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)

\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)