a) n+3 chia hết cho n - 1
b) 2n - 1 chia hết cho n + 2
nhanh lên mk đang cần gấp , ai làm xong nhanh đúng đủ mk tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Có:6x+3chc2x-1\)
\(\Rightarrow2.3x-3+6chc2x-1\)
\(\Rightarrow3\left(2x-1\right)+6chc2x-1\)
\(mà3\left(2x-1\right)chc2x-1\)
\(\Rightarrow6chc2x-1\Rightarrow2x-1\inƯ_{\left(6\right)}\)
\(\Rightarrow2x-1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(mà2x-1lẻ\)
\(\Rightarrow2x-1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{1;0;2;-1\right\}\)
tick nha
mik ghi đầy đủ rồi mà!!! ý bạn là sao? mik chưa hiểu!!
Ta có:
A,3n +7 chia hết cho n ( đề bài)
Lại có: 3n chia hết cho n vì n nhân bất cứ số nào cũng chia hết cho n.(1)
Suy ra 7 chia hết cho n. Mà 7 chỉ chia hết cho 7 nên 3n+7 chia hết cho 7. (2)
Vậy ta có 3n +7 chia hết cho n.
Ta có:
B,4n chia hết cho 2n vì bất cứ số nào chia hết cho 4 cũng chia hết cho 2.
Mà 9 không chia hết cho 2n nên không tồn tại số tự nhiên n.
Phần c làm tương tự như phần b.
Phần d tớ chịu
C, 6n chia hết cho 3n vì bất cứ số nào chia hết cho 6 cũng chia hết cho 3.
Mà 11 không chia hết cho 3n nên không tồn tại số tự nhiên n
D, Mình không biết trình bày chỉ biết kết quả là 2 thui mong bạn thông cảm!
Mình trả lời hết rồi nhé!
a)
3n+1 chia hết cho 11-n=> -3(-n+11)+34 chia hết cho 11-n
Mà -3(-n+11) chia hết cho 11-n=>34 chia hết cho 11-n=>11-n thuộc U(34)={1,2,17,34,-1,-2,-17,-34} mà n thuộc N =>n thuộc {10,9,12,13,28,45}
(7.5^2n +12.6^n)chia het cho 19
n=1 thì giả thiết đúng .
Giả sử n=k đúng với giả thiết .
Ta chứng minh n=k+1 đúng với giả thiết tức là
7x5^(2n+2)+12x6^(n+1) chia hết cho 19
thật vậy ta có :
7x5^(2n+2)+12*6^(n+1) = (5^2*7*5^2n +6*12.6^n) =19x7x5^2n+6(7.5^2n +12.6^n) .
Ta có cả 2 số hạng đều chia hết cho 19 .
Vì 25 đồng dư với 6 (mod19) nên 25^n đồng dư với 6^n (mod19)
suy ra: 7.5^2n+12.6^n=7.25^n+12.6^n đồng dư với 7.6^n+12.6^n (mod19)
Mà 7.6^n+12.6^n=19.6^n đồng dư với 0 (mod19) suy ra: 7.5^2n+12.6^n đồng dư với 0 (mod19)
Chứng tỏ 7.5^2n+12.6^n chia hết cho 19
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
Ta có:2n+1=2(n-2)+5
Vì 2(n-2) chia hết cho n-2
=>5 chia hết cho n-2=>n-2 thuộc ước của 5
Ta có bảng giá trị:
(Đến đây dễ rồi cậu tự tính nhé)
2n+1=2n-4+3=2(n-2)+3
Nhận thấy; 2(n-2) chia hết cho n-2 với mọi n
=> Để 2n+1 chia hết cho n-2 thì 3 phải chia hết cho n-2 => n-2=(-3,-1,1,3)
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-4,-2,1,2,4}
=>n\(\in\){0,-3,-1,2,3,5}
b)<=>2(n+2)-3 chia hết n+2
=>3 chia hết n+2
=>n+2\(\in\){-1,-3,1,3}
=>n\(\in\){-3,-5,-1,1}
a, n+3 chia hết cho n-1
Để n+3 chia hết cho n-1 => n+3-(n+1) chia hết cho n-1
n-1 chia hết cho n-1 => n+3-n+1 chia hết cho n-1=4 chia hết cho n-1
=> n-1 thuộc Ư(4)
=> n-1 thuộc {1;2;4}
=> n thuộc { 2;3;6}