Gọi I là tâm của đường tròn C : x - 1 2 + y - 1 2 = 4 . Số các giá trị nguyên của m để đường thẳng x+y-m=0 cắt đường tròn (C) tại hai điểm phân biệt A, B sao cho tam giác IAB có diện tích lớn nhất là
A.1
B.3
C.2
D.0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
.
Vì nên phương trình có 2 nghiệm phân biệt.
Do đó hàm số có hai điểm cực trị .
Giả sử hàm số có hai điểm cực trị lần lượt là và , với , là nghiệm của phương trình .
Thực hiện phép chia cho ta được : .
Khi đó ta có: .
Ta thấy, toạ độ hai điểm và thoả mãn phương trình .
Do đó, phương trình đường thẳng qua hai điểm cực trị là .
Ta thấy luôn qua .
Đặt .
.
Xét hàm số , .
, .
Suy ra hàm số liên tục và đồng biến trên .
Do đó .
Vậy đạt giá trị lớn nhất .
Đạo hàm y’ = 3x2 – 3m
Hàm số có 2 cực trị khi và chỉ khi : m> 0
Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là:
M ( m ; - 2 m m + 2 ) N ( - m ; 2 m m + 2 ) ⇒ M N → = ( - 2 m ; 4 m m )
Phương trình đường thẳng MN: 2mx+ y-2=0
Ta có :
S ∆ I A B = 1 2 I A . I B . sin A I B ^ = 1 2 sin A I B ^ ≤ 1 2
Dấu bằng xảy ra khi
Chọn B.
Chọn B
[Phương pháp tự luận]
y ' = 3 x 2 - 3 m
Hàm số có 2 cực trị khi và chỉ khi m > 0
Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là : M ( m ; - 2 m m + 2 )
Phương trình đt MN : 2 m x + y - 2 = 0
⇔ m = 1 ± 3 2