Cho các số thực a và b thỏa mãn: ( 2 + a ) ( 1 + b ) = 9 2 Giá trị nhỏ nhất của biểu thức: P = 16 + a 4 + 4 1 + b 4 nằm trong khoảng
A. (8,1;8,3)
B. (4;4,2)
C. (8,3;8,5)
D. (12,4;12,6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+4\geq 2\sqrt{4a^2}=|4a|\geq 4a$
$b^2+4\geq |4b|\geq 4b$
$2(a^2+b^2)\geq 4|ab|\geq 4ab$
Cộng theo vế và thu gọn:
$3(a^2+b^2)+8\geq 4(a+b+ab)=32$
$\Rightarrow a^2+b^2\geq 8$
Vậy $a^2+b^2$ min bằng $8$. Giá trị này đạt tại $a=b=2$
Áp dụng BĐT cosi:
`a^2+4>=4a`
`b^2+4>=4b`
`=>a^2+b^2+8>=4(a+b)(1)`
Áp dụng cosi:
`a^2+b^2>=2ab`
`=>2(a^2+b^2)>=4ab(2)`
Cộng từng vế (1)(2) ta có:
`3(a^2+b^2)+8>=4(a+b+ab)=32`
`<=>3(a^2+b^2)>=24`
`<=>(a^2+b^2)>=8`
Dấu "=" `<=>a=b=2`
ta có \(P=a^4+b^4+2-2-ab\)
AD BĐT cô si ta có
\(a^4+1\ge2a^2\) dấu = khi a=1
\(b^4+1\ge2b^2\) dấu = khi b =1
Khi đó \(P\ge2a^2+2b^2-2-ab\)
\(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)
\(P\ge4-3ab\)( Thay \(a^2+b^2+ab=3\)vào ) (1)
mặt khác \(a^2+b^2\ge2ab\)
khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)
=> \(ab\le1\) (2)
từ (1) và (2)
ta có \(P\ge4-3ab\ge4-3=1\)
vậy P đạt GTNN là 1 khi a=b=1
Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:
a 2 + b 2 ≥ 2 a b , b 2 + c 2 ≥ 2 b c , c 2 + a 2 ≥ 2 c a
Do đó: 2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9
Dấu bằng xảy ra khi a = b = c = 3 . Vậy MinP= 9 khi a = b = c = 3
Vì a , b , c ≥ 1 , nên ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b
Tương tự ta có b c + 1 ≥ b + c , c a + 1 ≥ c + a
Do đó a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6
Mà P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18
⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi : a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1
Vậy maxP= 18 khi : a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1
Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2)
Theo Cauchy có:
\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)
=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)
Hoặc:
P2= (a2+b2+c2)(b2+c2+a2)
Theo Bunhiacopxki có:
P2= (a2+b2+c2)(b2+c2+a2) \(\ge\)(ab+bc+ca)2=92
=> P\(\ge\)9 => Pmin=9
Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)
\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)
\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)
Cộng từng vế của (1), (2) và (3) ta được:
ab + bc + ca -2(a +b +c) + 3 \(\ge0\)
=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)
Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)
=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)
Vậy GTLN của P là 18
Dâu "=" xảy ra khivà chỉ khi:
a =b=1, c=4
hoặc: b=c=1, a=4
hoặc: c=a=1, b=4
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+1\geq 2a$
$b^2+4\geq 4b$
$\Rightarrow a^2+b^2\geq 2a+4b-5$
$\Rightarrow P\geq 2a+4b-5+\frac{1}{a+b}+\frac{1}{b}$
$=\frac{a+b}{9}+\frac{1}{a+b}+(\frac{b}{4}+\frac{1}{b})+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}a+\frac{131}{36}b-5$
$=\frac{2}{3}+1+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq \frac{2}{3}+1+\frac{17}{9}+\frac{131}{36}.2-5=\frac{35}{6}$
Vậy $P_{\min}=\frac{35}{6}$ khi $a=1; b=2$