Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều, SC = SD = a 3 . Tính thể tích V của khối chóp S.ABCD theo a
A. V = a 3 2 6
B. V = a 3 6
C. V = a 3 2
D. V = a 3 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi M, N lần lược là trung điểm của A B , C D ⇒ S M N ⊥ A B C D
Đáp án C
Gọi M, N lần lượt là trung điểm của AB và CD
Tam giác SAB cân tại S suy ra S M ⊥ A B
⇒ S M ⊥ d , với d = ( S A B ) ∩ ( S C D )
Vì ( S A B ) ⊥ ( S C D ) suy ra S M ⊥ ( S C D )
Kẻ S H ⊥ M N ⇒ S H ⊥ ( A B C D )
Ta có S ∆ S A B + S ∆ S C D = 7 a 2 10
⇒ S M + S N = 7 a 5
Tam giác SMN vuông tại S nên S M 2 + S N 2 = M N 2 = a 2
Giải hệ S M + S N = 7 a 5 S M 2 + S N 2 = a 2
Vậy thể tích khối chóp V S . A B C D = 1 3 . S A B C D . S H = 4 a 3 25
Đáp án D
Gọi H là trung điểm AB, do tam giác SAB đều nên SA ⊥ AB. Mặt khác mặt phẳng (SAB) vuông góc với mặt đáy nên SH là đường cao của chóp.
Ta có h = S H = a 3 2 , S A B C D = a 2
Vậy V = 1 3 . a 3 2 . a 2 = a 3 3 6
Chọn D.
Ta có: SA=SB=AB=a 3
Gọi H là trung điểm của AB.
Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2
Diện tích đáy S A B C D = 3 a 2
Vậy thể tích khối chóp
V
S
.
A
B
C
D
=
1
3
S
H
.
S
A
B
C
D
=
3
a
2
2
Lời giải:
Vì $(SAB), (SAD)$ cùng vuông góc với $(ABCD)$ mà $(SAB)\cap (SAD)\equiv SA$ nên $SA\perp (ABCD)$
Vì $SA\perp (ABCD)$ nên $SA\perp CB$
Mà: $AB\perp CB$
$\Rightarrow CB\perp (SAB)$
$\Rightarrow \angle (SC,(ABCD))=\angle (SC, SB)=\angle CSB=45^0$
$\Rightarrow SB=CB=a$
$SA=\sqrt{SB^2-AB^2}=\sqrt{a^2-a^2}=0$ (vô lý)
Đáp án A
Gọi M, N là trung điểm của A B , C D ⇒ S M N ⊥ A B C D .
Tam giác SAB đều ⇒ S M = a 3 2 ; tam giác SCD cân ⇒ S N = a 11 2 .
Kẻ S H ⊥ M N H ∈ M N ⇒ S H ⊥ A B C D
Mặt khác S ∆ S M N = a 2 2 4 ⇒ S H = 2 . S ∆ S M N M N = a 2 2 .
Vậy thể tích khối chóp S.ABCD là V = 1 3 S H . S A B C D = 1 3 . a 2 2 . a 2 = a 3 2 6 .
Không được rõ ràng ở đoạn diện tích SMN