K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Đáp án D

Phương trình hoành độ giao điểm của  C và  d

x x − 1 = m − x ⇔ x ≠ 1 x 2 − m x + m = 0    * .

Để  C cắt  d  tại hai điểm phân biệt ⇔ *  có hai nghiệm phân biệt khác 1 ⇔ m > 4 m < 0 .  

Khi đó, gọi điểm A x 1 ; m − x 1  và B x 2 ; m − x 2  là giao điểm của đồ thị C  và d .

⇒ O A = 2 x 1 2 − 2 m . x 1 + m 2 = 2 x 1 2 − m x 1 + m + m 2 − 2 m = m 2 − 2 m O B = 2 x 2 2 − 2 m . x 2 + m 2 = 2 x 2 2 − m x 2 + m + m 2 − 2 m = m 2 − 2 m  

Khoảng cách từ O đến AB bằng

h = d O ; d = m 2 ⇒ S Δ A B C = 1 2 . h . A B = m 2 2 . A B  

Ta có

S Δ A B C = a b c 4 R ⇔ R = a b c 4. S Δ A B C = O A . O B . A B 2. h . A B = O A . O B 2. h ⇔ 4 2 . m 2 = O A . O B ⇔ O A 2 . O B 2 = 16 m 2

Khi đó m 2 − 2 m 2 = 16 m 2 ⇔ m 2 − 2 m = 4 m m 2 − 2 m = − 4 m ⇔ m = 0 m = − 2 m = 6 .  

Kết hợp với điều kiện m > 4 m < 0 ,  ta được m = − 2 m = 6  là giá trị cần tìm

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

18 tháng 12 2022

b: Để hai đường song song thì m-2=2

=>m=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Leftrightarrow OB=2\)

SAOB=1

=>1/2*4/|m-2|=1

=>4/|m-2|=2

=>|m-2|=2

=>m=4 hoặc m=0

12 tháng 10 2019

Phương trình hoành độ giao điểm của (C)  và đường thẳng d:

2 x + 1 x - 1 = x + m ( x ≠ 1 ) ⇔ x 2 + ( m - 3 ) x - m - 1 = 0     ( 1 )

Khi đó  cắt (C)  tại hai điểm phân biệt  A: B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1 

⇔ ( m - 3 ) 2 + 4 ( m + 1 ) > 0 1 2 + ( m - 3 ) - m - 1 ≠ 0 ⇔ m 2 - 2 m + 13 > 0 - 1 ≠ 0  luôn đúng

Gọi A( x; x1+m) ; B( x; x2+m)  trong đó x; x2 là nghiệm của (1) , theo Viet ta có 

x 1 + x 2 = 3 - m x 1 x 2 = - m - 1

Gọi I ( x 1 + x 2 2 ; ( x 1 + x 2 + 2 m 2 )   là trung điểm của AB, suy ra I ( 3 - m 2 ; 3 + m 2 )  , nên

C I → ( - 2 - 3 - m 2 ; 5 - 3 + m 2 )  

⇒ C I = 1 2 ( m - 7 ) 2 + ( 7 - m ) 2 .

Mặt khác A B → = ( x 2 - x 1 ;   x 2 - x 1 )

⇒ A B = 2 ( x 2 - x 1 ) 2 = 2 ( m 2 - 2 m + 13 ) 2

Vậy tam giác ABC  đều khi và chỉ khi

17 tháng 9 2018

22 tháng 4 2018

26 tháng 8 2019

9 tháng 2 2021

a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .

\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)

\(\Rightarrow a=-\dfrac{1}{2}\)

b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)

\(\Leftrightarrow3x+2=2mx-x+8\)

\(\Leftrightarrow3x+2-2mx+m-8=0\)

\(\Leftrightarrow x\left(3-2m\right)=6-m\)

- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

Vậy ...

 

a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên

Thay x=6 và y=0 vào hàm số y=ax+3, ta được:

\(6a+3=0\)

\(\Leftrightarrow6a=-3\)

hay \(a=-\dfrac{1}{2}\)

Vậy: \(a=-\dfrac{1}{2}\)

b)

Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)

\(\Leftrightarrow2m\ne1\)

hay \(m\ne\dfrac{1}{2}\)(1)

Để (d) cắt (d') thì \(2m-1\ne3\)

\(\Leftrightarrow2m\ne4\)

hay \(m\ne2\)(2)

Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)