Có bao nhiêu giá trị nguyên của m lớn hơn -2018 để hàm số y = − x 3 − 3 x 2 + 4 m x − 2018 nghịch biến trên ( − ∞ ; 0 ) ?
A. 2017
B. 2018.
C. 2019
D. Vô số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Cách giải:
+ => Hàm số đồng biến trên
+ Phương trình (1) có 2 nghiệm phân biệt
Theo đinh lí Viet ta có
Khi đó, để hàm số đồng biến trên khoảng (1;+∞) thì
( vô lí )
Vậy m ≥ 13
Mà
Số giá trị của m thỏa mãn là: 2018 - 13 + 1 = 2006
Hàm số bậc nhất đồng biến suy ra a > 0 hay m > 2
m thuộc đoạn [-2018; 2018] suy ra m thuộc {3; 4; ...; 2018}
Vậy có 2016 giá trị nguyên của m cần tìm.
Chọn D.
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Chọn B
Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.
Đáp án A.
Ta có y ' = − 3 x 2 − 6 x + 4 m =>Hàm số nghịch biến trên − ∞ ; 0
⇔ y ' ≤ 0 ∀ x ∈ − ∞ ; 0 ⇔ 4 m ≤ 3 x 2 + 6 x ∀ x ∈ − ∞ ; 0
Bảng biến thiên:
⇒ 3 x 2 + 6 x ≥ − 3 ∀ x ∈ − ∞ ; 0 ⇒ 4 m ≤ 3 x 2 + 6 x ∀ x ∈ − ∞ ; 0
⇔ 4 m ≤ − 3 ⇔ m ≤ − 3 4 ⇒ m ∈ − 2018 ; − 3 4 m ∈ ℤ