Cho các đa thức:
f(x) = anxn + an – 1xn– 1 + … + a1x + ao
g(x) = bnxn + bn – 1xn– 1 + … + b1x + bo
Tính f(x) – g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = anxn + an – 1xn– 1 + … + a1x + ao
+
g(x) = bnxn + bn – 1xn– 1 + … + b1x + bo
--------------------------------------------------------
f(x) + g(x) = (an + bn)xn + (an – 1 + bn – 1)xn– 1 + ….. + (a1 + b1)x + (ao + bo)
Chọn D
Đạo hàm hai vế f(x)
Số hạng tổng quát thứ k + 1 trong khai triển thành đa thức của
`a)f(x)-g(x)`
`=x^3-2x^2+3x+1-(x^3+x-1)`
`=x^3-2x^2+3x+1-x^3-x+1`
`=(x^3-x^3)+(3x-x)-2x^2+2`
`=-2x^2+2x+2=0`
`b)f(x)-g(x)+h(x)=0`
`<=>-2x^2+2x+2+2x^2-1=0`
`<=>2x+1=0`
`<=>2x=-1`
`<=>x=-1/2`
Vậy `x=-1/2` thì `f(x)-g(x)+h(x)=0`
a) \(f\left(x\right)-g\left(x\right)\) hay \(x^3-2x^2+3x+1-x^3-x+1=-2x^2+2x+2\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\) hay \(-2x^2+2x+2+2x^2-1=2x+1\Rightarrow2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
a: Thay a=2 vào f(x), ta được:
f(x)=3x-2
f(x):g(x)
\(=\dfrac{3x-2}{x-1}\)
\(=\dfrac{3x-3+1}{x-1}\)
\(=3+\dfrac{1}{x-1}\)
f(x) = anxn + an – 1xn– 1 + … + a1x + ao
-
g(x) = bnxn + bn – 1xn– 1 + … + b1x + bo
--------------------------------------------------------
f(x) - g(x) = (an - bn)xn + (an– 1 - bn – 1)xn– 1 + ..… + (a1 - b1)x + (ao - bo)