Chứng minh rằng: Nếu một phép dời hình biến tam giác ABC thành tam giác A’B’C’ thì nó cũng biến trọng tâm của tam giác ABC tương ứng thành trọng tâm của tam giác A’B’C’.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phép dời hình đó là f. Do f biến các đoạn thẳng AB, AC tương ứng thành các đoạn thẳng A'B', A'C' nên nó cũng biến các trung điểm M, N của các đoạn thẳng AB, AC tương ứng theo thứ tự thành các trung điểm M', N' của các đoạn thẳng A'B', A'C'. Vậy f biến các trung tuyến CM, BN của tam giác ABC tương ứng thành các trung tuyến C'M', B'N' của tam giác A'B'C'. Từ đó suy ra f biến trọng tâm G của tam giác ABC của CM và BN thành trọng tâm G' của tam giác A'B'C' là giao của C'M' và B'N'.
Gọi phép dời hình đó là f. Do f biến các đoạn thẳng AB, AC tương ứng thành các đoạn thẳng A'B', A'C' nên nó cũng biến các trung điểm M, N của các đoạn thẳng AB, AC tương ứng theo thứ tự thành các trung điểm M', N' của các đoạn thẳng A'B', A'C'. Vậy f biến các trung tuyến CM, BN của tam giác ABC tương ứng thành các trung tuyến C'M', B'N' của tam giác A'B'C'. Từ đó suy ra f biến trọng tâm G của tam giác ABC của CM và BN thành trọng tâm G' của tam giác A'B'C' là giao của C'M' và B'N'.
Đáp án D
Phát biểuđúng: a , c, e, f, g, i, j, l
b. Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó có thể là phép tịnh tiến
d. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính
h. Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB = A’B’.
k. Nếu phép dời hình biến điểm A thành điểm B thì nó cũng biến điểm B thành A (phát biểu không đúng với phép tịnh tiến)
Đáp án C
Trọng tâm tam giác ABC là
Phép tịnh tiến T B C → biến trọng tâm G của tam giác ABC thành trọng tâm của tam giác A’B’C’, ta có
Đáp án B
A’ = V G ; k ( A ) => − 2 G A ' → = G A → =>Tỉ số vị tự k = – 2
Gọi f là phép dời hình biến tam giác ABC thành tam giác A’B’C’.
Gọi D là trung điểm của BC, D’ = f(D).
Gọi G là trọng tâm ΔABC, G’ = f(G).
+ B, D, C thẳng hàng ⇒ B’; D’; C’ thẳng hàng.
+ A; G; D thẳng hàng ⇒ A’; G’; D’ thẳng hàng.
+ B’D’ = BD = BC/2 = B’C’/2 ⇒ D’ là trung điểm B’C’.
+ A’G’ = AG = 2.AD/3 = 2.A’D’/3 ⇒ G’ là trọng tâm ΔA’B’C’.
Vậy phép dời hình f biến trọng tâm G của ΔABC thành trọng tâm G’ của ΔA’B’C’ (đpcm).