Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, cắt các cạnh AB, AC theo thứ tự D, E
a, Chứng minh CD ⊥ AB và BE ⊥ AC
b, Gọi K là giao điểm của BE và CD. Chứng minh AK ⊥ BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K là giao điểm của hai đường cao CD và BE nên K là trực tâm của tam giác ABC
Suy ra: AK ⊥ BC
Bài này dễ mà bạn. Có nhiều cách, cách nhanh nhất là dùng tứ giác nội tiếp.
Hình vẽ.
Cách 1. Ta có: \(\widehat{BDC}=\widehat{BEC}=90^o\) (góc nội tiếp chắn nửa đường tròn)
Do đó BE, CD là hai đường cao của tam giác giác ABC, cắt nhau tại K.
Vậy AK là đường cao còn lại của tam giác.
Do đó \(AK\bot BC\)
Cách 2. Nối DO là thì có DO là đường trung tuyến tam giác BDC.
Mà \(DO=R=\dfrac{1}{2}BC\) nên tam giác BDC vuông tại D.
Vậy $\widehat{BDC}=90^o.$ Tương tự $\widehat{BEC}=90^o.$
Từ đây tương tự cách 1.
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBEC vuông tại E
a. Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại D.
Suy ra: \(CD \perp AB\)
Tam giác BCE nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại E.
Suy ra: \(BE \perp AC\)
b. K là giao điểm của hai đường cao CD và BE nên K là trực tâm của tam giác ABC
Suy ra: \(AK \perp BC\)
a: Xét \(\left(O\right)\) có
\(\widehat{BDC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BDC}=90^0\)
Xét \(\left(O\right)\) có
\(\widehat{BEC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BEC}=90^0\)
b: Xét ΔABC có
BE là đường cao ứng với cạnh huyền AC
CD là đường cao ứng với cạnh huyền AB
BE cắt CD tại K
Do đó: AK\(\perp\)BC
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
hay CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
hay BE\(\perp\)AC
b: Xét tứ giác BDEC có
\(\widehat{BDC}=\widehat{BEC}=90^0\)
nên BDEC là tứ giác nội tiếp
c: Xét ΔBAC có
BE là đường cao
CD là đường cao
BE cắt CD tại K
Do đó: K là trực tâm
=>AK\(\perp\)CB
a, Có O là trung điểm của BC
Mà D ∈ (O; 1 2 BC) => OB = OD = OC
=> ∆BDC vuông tại D => CD ⊥ AB
Tương tự BE ⊥ AC
b, Xét ∆ABC có K là trực tâm => AK ⊥ BC