Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A của (O) cắt BC tại P
a, Chứng minh các tam giác PAC và PBA đồng dạng
b, Chứng minh P A 2 = P B . P C
c, Tia phân giác trong của góc A cắt BC và (O) lần lượt tại D và M. Chứng minh M B 2 = M A . M D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: ΔPAC\(\sim\)ΔPBA
Xét ΔPAC và ΔPBA có
\(\widehat{P}\) chung
\(\widehat{PCA}=\widehat{PAB}\)
Do đó: ΔPAC\(\sim\)ΔPBA
b: Ta có: ΔPAC\(\sim\)ΔPBA
nên PA/PB=PC/PA
hay \(PA^2=PB\cdot PC\)
d, từ C kẻ đường thẳng // với PM cắt AE,AB tại Q và K
lấy H là trung điểm của BC
=>OH vuông góc với BC
H và E cùng nhìn OP dưới 1 góc 90 =>tứ giác OHEP nội tiếp =>góc MPH = góc OEH mà góc MPH = góc KCH (PM//CK) =>góc KCH= góc OEH =>tứ giác HQCE nội tiếp =>góc QHC = góc AEC mà góc AEC = góc ABC =>góc QHC=góc ABC =>QH//AB mà H là trung điểm BC
=>Q là trung điểm CK
Áp dụng định lí TA-let ta được tam giác AMO đồng dạng tam giác AKQ =>MO/KQ=AO/AQ
cmtt NO/CQ=AO/AQ mà CQ=KQ =>OM=ON
a) Chứng minh tam giác MAB đồng dạng tam giác MFC
b) Chứng minh góc \(\widehat{BKF}=\widehat{FAD}\)
c) E là trực tâm của \(\Delta MBC\)suy ra MH vuông góc BC ... suy ra tứ giác MDBH là hình thang
d) \(\Delta BHE\)đồng dạng \(\Delta BAC\)... suy ra BE.BA=BC.BH
\(\Delta CHE\)đồng dạng \(\Delta CFB\)... suy ra CE.CF=CB.CH
BE.BA+CE.CF=BC.BH+CB.CH=BC(BH+CH)=BC.BC=BC^2
a: góc OBE+góc OCE=180 độ
=>OBEC nội tiếp
b: Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc BED chung
=>ΔEBD đồng dạng với ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
a, HS tự chứng minh
b, HS tự chứng minh
c, Chứng minh được: B A M ^ = M B C ^
Từ đó chứng minh được:
∆MAB:∆MBD => M B 2 = M A . M D