giai phuong trình
3x(x+2)(x-3)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với dạng bài này ta chỉ việc chia hoocne là ra nhé!
\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)
\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
\(x^4+3x^2+x^3+2x+2=0\)
\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)
Do 2 thừa số ở VT đều > 0
\(\Rightarrow\) PTVN
\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
Ta có:
\(x^3+5x^2+3x-9=0\)
\(\Leftrightarrow x^3+3x^2+2x^2+6x-3x-9=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy PT có nghiệm là \(\left\{1;-3\right\}\)
1) Ta có: \(x^2-3x-7\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=7\end{matrix}\right.\)
Vậy: S={3;7}
sáng sớm lang thang lật lại mấy trang gặp bài này, xin trình bày vài cách:
Đk:\(x\ge2\) \(\left(DK\forall PP\right)\)
C1 \(pt\Leftrightarrow x^3-3x\left(x+2\right)-2\sqrt{\left(x+2\right)^3}=0\)
Đặt \(t=\sqrt{x+2}\) ra pt đăng cấp bậc 3...
c2:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2=\left(3\left(x+1\right)\right)^2\)
c3:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}-3x-2\right)\left(3x+\sqrt{\left(x+2\right)^3+4}\right)=0\)
C4:Chia 2 vế x3 dc:
\(1-\frac{3}{x}\pm2\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}-\frac{6}{x^2}=0\)
đặt \(\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}=t\) dc \(1\pm3t^2+2t^3=0\)
Ngoài ra còn có thể liên hợp ,.....
\(x^2-3x+2+\left|x-1\right|=0\)
\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)
\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)
-2x2 - x - 2 > 0
=> -2x2 - x - 2 = 0
=> x không € R
-2x2 - x - 2 > 0, a = -2
=> x € tập hợp rỗng
x 1-x 2x+1 3-2x Tích số -1/2 1 3/2 0 0 0 0 0 0 + + - - - + + + + + + - - + - +
Vậy , nghiệm của BPT : −12<x<1−12<x<1 hoặc : x > 3232
c.
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Giải phương trình
10
Đơn giản biểu thức
11
Giải phương trình
12
Đơn giản biểu thức
13
Lời giải thu được
a,
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Đơn giản biểu thức
10
Lời giải thu được