Tất cả các giá trị của tham số m để hệ phương trình x - y = m x 2 - x y - m - 2 = 0 có nghiệm là
A. m = 0
B. m ≠ 0
C. m = 2
D. m ≠ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2
* Nếu m= 0 thì bất phương trình đã cho trở thành:
0x < 0( luôn đúng với mọi x).
* Nếu m= 1 thì bất phương trình đã cho trở thành:
0x < 1 ( luôn đúng với mọi x)
Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Để xét bất phương trình bậc nhất vô nghiệm hay luôn đúng với mọi x ta chỉ cần xét hệ số a= 0.
* Với m = 0 thì bất phương trình đã cho trở thành:
0 x ≤ 0 ( luôn đúng với mọi x) ( loại)
* Với m = -3 thì bất phương trình đã cho trở thành:
0 x ≤ 9 (luôn đúng với mọi x) ( loại)
Vậy không có giá trị nào của m để bất phương trình đã cho vô nghiệm
x - y = m ( 1 ) x 2 - x y - m - 2 = 0 ( 2 )
Từ (1), ta có y = x - m , thế vào (2) ta được phương trình:
x2 – x (x- m) – m - 2= 0 ⇔ x2 – x2 + mx –m –2 = 0
hay mx –m -2 = 0 (*) .
Hệ phương trình đã cho có nghiệm khi phương trình (*) có nghiệm ⇔ m ≠ 0 .
Chọn B.