K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Chọn D.

Ta có : 1 + i + i2 + i3 + ... + i2016 là tổng của cấp số nhân với số hạng đầu u1 = 1, công bội q = i.

Do đó, phần thực và phần ảo của z lần lượt là: 1 và 0.

20 tháng 4 2021

undefined

12 tháng 4 2019

5 tháng 10 2017

30 tháng 6 2018

Đáp án A

Ta có  z = 5 - i 1 + i + i - 1 1 - i 2 + i = 1 + 2 i ⇒ w = 8 i ⇒ w = 8 .

7 tháng 8 2018

Đáp án C

Giả thiết 

Đặt  khi đó

=> Do đó tập hợp điểm biễu diễn z là đường tròn tâm I(0;-3), bán kính R =  10

 

21 tháng 11 2018

16 tháng 2 2018

Đáp án B

Đặt z = a + bi , ta có:

30 tháng 5 2018

26 tháng 6 2018

bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(\left(1+i\right)z+\overline{z}=i\Leftrightarrow\left(1+i\right)\left(a+bi\right)+\left(a-bi\right)=i\)

\(\Leftrightarrow a-b+ai+bi+a-bi=i\Leftrightarrow2a-b+ai=i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-b=0\\a=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow z=1+2i\) \(\Rightarrow W=1+i+z=1+i+1+2i=2+3i\)

\(\Rightarrow\) \(modul\) của số phức \(W\) là : \(\left|W\right|=\sqrt{2^2+3^2}=\sqrt{13}\)

vậy .............................................................................................................

bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(z^2\left(1-i\right)+2\overline{z}^2\left(1+i\right)=21-i\)

\(\Leftrightarrow\left(a+bi\right)^2\left(1-i\right)+2\left(a-bi\right)^2\left(1+i\right)=21-i\)

\(\Leftrightarrow\left(a^2+2abi-b^2\right)\left(1-i\right)+2\left(a^2-2abi-b^2\right)\left(1+i\right)=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2\left(a^2+a^2i-2abi+2ab-b^2-b^2i\right)=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)

\(\Leftrightarrow3a^2+6ab-3b^2+a^2i-2abi-b^2i=21-i\)

\(\Leftrightarrow\left(3a^2+6ab-3b^2\right)+\left(a^2-2ab-b^2\right)i=21-i\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\a^2-2ab-b^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\3a^2-6ab-3b^2=-1\end{matrix}\right.\)

\(\Rightarrow-ab=-2\Leftrightarrow-a^2b^2=-4\)\(a^2-b^2=3\)

\(\Rightarrow a^2\)\(-b^2\) là nghiệm của phương trình \(X^2-3X-4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\-b^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\b^2=1\end{matrix}\right.\)

\(\Rightarrow\) \(modul\) của số phức \(z\)\(\left|z\right|=\sqrt{a^2+b^2}=\sqrt{4+1}=\sqrt{5}\)

vậy ...................................................................................................................

hôm sau phân câu 1 ; câu 2 rỏ ra nha bạn . cho dể đọc thôi haha

20 tháng 11 2017