Tìm tất cả các số nguyên n để A = n^2+ n+1 là số chính phương?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
0
TD
0
NV
0
HA
0
PT
0
HA
0
TQ
1
10 tháng 12 2021
Giả sử \(A=n^2+4n+11\) là số chính phương
đặt \(n^2+4n+11=k^2>0\)
\(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)
Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)
Ta có bảng:
n-k+2 | -1 | -7 |
n+k+2 | 7 | 1 |
n | 1 | -5(loại) |
k | 4 | 4 |
Vậy n=1