Cho tam giác ABC vuông tại A, kẻ AH vuông góc BC. Tìm tam giác đồng dạng với tam giác ABC?
A. ΔHAC
B. ΔAHC
C. ΔAHB
D. ΔABH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác vuông AHB và tam giác vuông AHC, có:
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
Vậy tam giác vuông AHB = tam giác vuông AHC ( cạnh huyền. góc nhọn)
=> HB = HC ( 2 cạnh tương ứng )
b.Xét tam giác vuông ADH và tam giác vuông AEH, có:
AH: cạnh chung
góc DAH = góc EAH ( AH là đường cao cũng là đường phân giác )
Vậy tam giác vuông ADH = tam giác vuông AEH
=> HD = HE ( 2 cạnh tương ứng )
=> tam giác HDE cân tại H
c.Xét tam giác vuông AEC và tam giác vuông ADB, có:
AB = AC ( ABC cân )
góc A: chung
Vậy tam giác vuông AEC = tam giác vuông ADB ( cạnh huyền.góc nhọn)
=> AD = AE ( 2 cạnh tương ứng )
=> tam giác ADE cân tại A
=> AH vuông với DE, mà AH cũng vuông với BC
=> DE//BC ( DE ko phải DC nha bạn )
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó:ΔAHB=ΔAHC
Suy ra: HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
c: Ta có: ΔADH=ΔAEH
nên AD=AE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
- Cách 1: ΔABC cân tại A nên ∠B = ∠C và AB = AC
Xét hai tam giác vuông ΔAHB và ΔAHC đều vuông tại H có:
AB = AC (GT)
∠B = ∠C
⇒ ΔAHB =ΔAHC (cạnh huyền – góc nhọn)
- Cách 2:
Xét hai tam giác vuông ΔAHB và ΔAHC đều vuông tại H có:
AB = AC
AH chung
⇒ ΔAHB = ΔAHC (cạnh huyền – cạnh góc vuông)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: BC=10cm
AH=4,8cm
c: Xét ΔABH vuông tại H có HM là đườg cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN\(\sim\)ΔACB
\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b)\) Xét \(\Delta ABC\) vuông tại A:
\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Xét ΔABC và ΔHAC có:
Suy ra: ΔABC đồng dạng với ΔHAC ( g.g)
Chọn đáp án A