K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

Ta có

N   =   ( 2   +   1 ) ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     ( 2 16   +   1 )   =   3 ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 )     ( 2 16   +   1 )   =   [ ( 2 2   –   1 ) ( 2 2   +   1 ) ] ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 4   –   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 8   –   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 16   -   1 ) ( 2 16   +   1 )   = 2 16 2 − 1 = 2 32 − 1 M à   2 32 − 1 > 2 32 ⇒   N < M

Đáp án cần chọn là: A

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=2^{2016}-1< 2^{2016}=M\)

Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1< 2^{32}\)

\(\Leftrightarrow A< B\)

12 tháng 7 2015

 

A = 3(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1 

 =(22-1)(22+1)(24+1)(28+1)(216+1)+1

=(24-1)(24+1)(28+1)(216+1)+1

=(28-1)(28+1)(216+1)+1

=(216-1)(216+1)+1

=232-1+1

=232 = B

vậy A=B

31 tháng 7 2016

Bài 1: a)  \(M=1+5+5^2+...+5^{100}\)

\(5M=5+5^2+5^3+...+5^{101}\)

\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)

\(4M=5^{101}-1\)

\(M=\frac{5^{101}-1}{4}\)

b) \(N=2+2^2+...+2^{100}\)

\(2N=2^2+2^3+...+2^{101}\)

\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(N=2^{101}-2\)

31 tháng 7 2016

Bài 2:

a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\) 

\(32^{16}=\left(2^5\right)^{16}=2^{80}\)

Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)

Ta có:

\(N=\left(1+2\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=\left(2^8-1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=2^{4016}-1>2^{2016}=M\)

 

 

2 tháng 9 2021

Ta có:

N=(1+2)(2−1)(22+1)(24+1)...(22008+1)N=(1+2)(2−1)(22+1)(24+1)...(22008+1)

⇔N=(22−1)(22+1)(24+1)...(22008+1)⇔N=(22−1)(22+1)(24+1)...(22008+1)

⇔N=(24−1)(24+1)...(22008+1)⇔N=(24−1)(24+1)...(22008+1)

⇔N=(28−1)...(22008+1)⇔N=(28−1)...(22008+1)

⇔N=24016−1>22016=M

12 tháng 8 2016

Ta có : 

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

= ..................................................................

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=B\)

=> A = B

12 tháng 8 2016

Đề thiếu