K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

2c+b+d ;?

 

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Do đó:

\(\left(\dfrac{a+2c}{b+2d}\right)^2=\left(\dfrac{bk+2dk}{b+2d}\right)^2=k^2\left(1\right)\)

\(\dfrac{a^2+2c^2}{b^2+2d^2}=\dfrac{b^2k^2+2d^2k^2}{b^2+2d^2}=k^2\left(2\right)\)

Từ (1) và (2) ta suy ra đpcm

25 tháng 2 2017

Bạn đưa về như họ là đc , mk thử giúp bạn

(2a + b)/(a+b) = (a+a+b)/(a+b) = a/(a+b) + (a+b)/(a+b) = a/(a+b) + 1

Ở câu hỏi tương tự người ta đưa về dạnh này

24 tháng 2 2017

bạn xem câu hỏi tương tự ý 

9 tháng 3 2021

\(\orbr{\begin{cases}\\\end{cases}}\)

Vì c, d là 2 số nguyên liên tiếp nên \(d=c+1\)

Thay vào đẳng thức \(a-b=a^2c-b^2d\)ta được

\(a-b=a^2c-b^2\left(c+1\right)\)

\(\Leftrightarrow\left(a-b\right)\left[c\left(a+b\right)-1\right]=b^2\)

Dễ dàng chứng minh được \(\left(a-b,c\left(a+b\right)-1\right)=1\)

nên \(\left|a-b\right|\)là số chính phương

4 tháng 3 2020

Tui lười nghĩ đoạn CM nguyên tố cùng nhau lắm @@

24 tháng 6 2021

Vì a,b,c,d>0 ta áp dụng t/c dãy tỉ số bằng nhau:

`a/(2b)=b/(2c)=c/(2d)=d/(2a)=(a+b+c+d)/(2a+2b+2c+2d)=1/2`

`=>a/(2b)=1/2=>a=b`

Tương tự ta có:`b=c,c=d,d=a`

`=>a=b=c=d`

`=>A=(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)=1/2+1/2+1/2+1/2=2`

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2b+2c+2d+2a}=\dfrac{1}{2}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{2b}=\dfrac{1}{2}\\\dfrac{b}{2c}=\dfrac{1}{2}\\\dfrac{c}{2d}=\dfrac{1}{2}\\\dfrac{d}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Leftrightarrow a=b=c=d\)

Ta có: \(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{d+a}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)

\(=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)